Breakpoint Analysis of Transcriptional and Genomic Profiles Uncovers Novel Gene Fusions Spanning Multiple Human Cancer Types

Gene fusions, like BCR/ABL1 in chronic myelogenous leukemia, have long been recognized in hematologic and mesenchymal malignancies. The recent finding of gene fusions in prostate and lung cancers has motivated the search for pathogenic gene fusions in other malignancies. Here, we developed a “breakpoint analysis” pipeline to discover candidate gene fusions by tell-tale transcript level or genomic DNA copy number transitions occurring within genes. Mining data from 974 diverse cancer samples, we identified 198 candidate fusions involving annotated cancer genes. From these, we validated and further characterized novel gene fusions involving ROS1 tyrosine kinase in angiosarcoma (CEP85L/ROS1), SLC1A2 glutamate transporter in colon cancer (APIP/SLC1A2), RAF1 kinase in pancreatic cancer (ATG7/RAF1) and anaplastic astrocytoma (BCL6/RAF1), EWSR1 in melanoma (EWSR1/CREM), CDK6 kinase in T-cell acute lymphoblastic leukemia (FAM133B/CDK6), and CLTC in breast cancer (CLTC/VMP1). Notably, while these fusions involved known cancer genes, all occurred with novel fusion partners and in previously unreported cancer types. Moreover, several constituted druggable targets (including kinases), with therapeutic implications for their respective malignancies. Lastly, breakpoint analysis identified new cell line models for known rearrangements, including EGFRvIII and FIP1L1/PDGFRA. Taken together, we provide a robust approach for gene fusion discovery, and our results highlight a more widespread role of fusion genes in cancer pathogenesis.

[1]  Christine Chomienne,et al.  The PML-RARα fusion mRNA generated by the t(15;17) translocation in acute promyelocytic leukemia encodes a functionally altered RAR , 1991, Cell.

[2]  Alex E. Lash,et al.  Gene Expression Omnibus: NCBI gene expression and hybridization array data repository , 2002, Nucleic Acids Res..

[3]  R. Tibshirani,et al.  Gene expression profiling identifies clinically relevant subtypes of prostate cancer. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[4]  R. Tibshirani,et al.  Spatial smoothing and hot spot detection for CGH data using the fused lasso. , 2008, Biostatistics.

[5]  E. Ruoslahti,et al.  A Mitochondrial Protein, Bit1, Mediates Apoptosis Regulated by Integrins and Groucho/TLE Corepressors , 2005, Cell.

[6]  Adam A. Margolin,et al.  The Cancer Cell Line Encyclopedia enables predictive modeling of anticancer drug sensitivity , 2012, Nature.

[7]  B. Johansson,et al.  Fusion genes and rearranged genes as a linear function of chromosome aberrations in cancer , 2004, Nature Genetics.

[8]  The UniProt Consortium,et al.  Reorganizing the protein space at the Universal Protein Resource (UniProt) , 2011, Nucleic Acids Res..

[9]  N. Socci,et al.  Identification of a novel, recurrent HEY1‐NCOA2 fusion in mesenchymal chondrosarcoma based on a genome‐wide screen of exon‐level expression data , 2012, Genes, chromosomes & cancer.

[10]  Joshua M. Korn,et al.  Comprehensive genomic characterization defines human glioblastoma genes and core pathways , 2008, Nature.

[11]  P. Sorensen,et al.  Expression of the ETV6-NTRK3 gene fusion as a primary event in human secretory breast carcinoma. , 2002, Cancer cell.

[12]  Charles Lee,et al.  Alu elements mediate MYB gene tandem duplication in human T-ALL , 2007, The Journal of experimental medicine.

[13]  David T. W. Jones,et al.  Tandem duplication producing a novel oncogenic BRAF fusion gene defines the majority of pilocytic astrocytomas. , 2008, Cancer research.

[14]  P. Åman,et al.  Fusion genes in solid tumors. , 1999, Seminars in cancer biology.

[15]  A. Yasunaga,et al.  Genetic Factors for Ischemic and Hemorrhagic Stroke in Japanese Individuals , 2008, Stroke.

[16]  J. Maguire,et al.  Integrative analysis of the melanoma transcriptome. , 2010, Genome research.

[17]  J. Silberg,et al.  A transposase strategy for creating libraries of circularly permuted proteins , 2012, Nucleic acids research.

[18]  R. Deberardinis,et al.  The biology of cancer: metabolic reprogramming fuels cell growth and proliferation. , 2008, Cell metabolism.

[19]  宁北芳,et al.  疟原虫var基因转换速率变化导致抗原变异[英]/Paul H, Robert P, Christodoulou Z, et al//Proc Natl Acad Sci U S A , 2005 .

[20]  J. Pollack,et al.  EGFRvIII gene rearrangement is an early event in glioblastoma tumorigenesis and expression defines a hierarchy modulated by epigenetic mechanisms , 2013, Oncogene.

[21]  J. Magaud,et al.  In B-cell chronic lymphocytic leukemias, 7q21 translocations lead to overexpression of the CDK6 gene. , 2003, Blood.

[22]  J. Stephenson,et al.  A cellular oncogene is translocated to the Philadelphia chromosome in chronic myelocytic leukaemia , 1982, Nature.

[23]  Kristian Cibulskis,et al.  Genomic sequencing of colorectal adenocarcinomas identifies a recurrent VTI1A-TCF7L2 fusion , 2011, Nature Genetics.

[24]  Tina Hernandez-Boussard,et al.  Determination of Stromal Signatures in Breast Carcinoma , 2005, PLoS biology.

[25]  P. Sorensen,et al.  A novel ETV6-NTRK3 gene fusion in congenital fibrosarcoma , 1998, Nature Genetics.

[26]  David B Jackson,et al.  EMT is the dominant program in human colon cancer , 2011, BMC Medical Genomics.

[27]  M. Mattei,et al.  Human CREM gene: evolutionary conservation, chromosomal localization, and inducibility of the transcript. , 1993, Cell growth & differentiation : the molecular biology journal of the American Association for Cancer Research.

[28]  Benjamin J. Raphael,et al.  Detection of recurrent rearrangement breakpoints from copy number data , 2011, BMC Bioinformatics.

[29]  M. Tallman Advancing the treatment of hematologic malignancies through the development of targeted interventions. , 2002, Seminars in hematology.

[30]  P. Marynen,et al.  Recurrent rearrangement of the Ewing's sarcoma gene, EWSR1, or its homologue, TAF15, with the transcription factor CIZ/NMP4 in acute leukemia. , 2002, Cancer research.

[31]  G. Hu,et al.  A requirement for cyclin-dependent kinase 6 in thymocyte development and tumorigenesis. , 2009, Cancer research.

[32]  Trevor Hastie,et al.  Discovery of molecular subtypes in leiomyosarcoma through integrative molecular profiling , 2009, Oncogene.

[33]  Stephen L. Abrams,et al.  Emerging Raf inhibitors , 2009, Expert opinion on emerging drugs.

[34]  Stephen L. Abrams,et al.  Ras/Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR Inhibitors: Rationale and Importance to Inhibiting These Pathways in Human Health , 2011, Oncotarget.

[35]  T. Gerdes,et al.  Maintenance of EGFR and EGFRvIII expressions in an in vivo and in vitro model of human glioblastoma multiforme. , 2011, Experimental cell research.

[36]  S. Scherer,et al.  Dysregulation of cyclin dependent kinase 6 expression in splenic marginal zone lymphoma through chromosome 7q translocations , 1999, Oncogene.

[37]  N. Heisterkamp,et al.  Rearrangement of the human ABL oncogene in a glioblastoma. , 1990, Cancer research.

[38]  J. Rowley A New Consistent Chromosomal Abnormality in Chronic Myelogenous Leukaemia identified by Quinacrine Fluorescence and Giemsa Staining , 1973, Nature.

[39]  J. Tchinda,et al.  Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer. , 2006, Science.

[40]  T. Hubbard,et al.  A census of human cancer genes , 2004, Nature Reviews Cancer.

[41]  Keara M. Lane,et al.  Fusion of FIG to the receptor tyrosine kinase ROS in a glioblastoma with an interstitial del(6)(q21q21) , 2003, Genes, chromosomes & cancer.

[42]  William C Reinhold,et al.  Exon array analyses across the NCI-60 reveal potential regulation of TOP1 by transcription pausing at guanosine quartets in the first intron. , 2010, Cancer research.

[43]  Antony V. Cox,et al.  Identification of somatically acquired rearrangements in cancer using genome-wide massively parallel paired-end sequencing , 2008, Nature Genetics.

[44]  T. Rabbitts,et al.  Chromosomal translocations in human cancer , 1994, Nature.

[45]  Jérôme Couturier,et al.  A novel CLTC-TFE3 gene fusion in pediatric renal adenocarcinoma with t(X;17)(p11.2;q23) , 2003, Oncogene.

[46]  Francesca Demichelis,et al.  Rearrangements of the RAF kinase pathway in prostate cancer, gastric cancer and melanoma , 2010, Nature Medicine.

[47]  A. Maitra,et al.  Pancreatic Carcinogenesis , 2008, Pancreatology.

[48]  R. Tibshirani,et al.  A fused lasso latent feature model for analyzing multi-sample aCGH data. , 2011, Biostatistics.

[49]  I. Pastan,et al.  Translocation chromosome 7 of A431 cells contains amplification and rearrangement of EGF receptor gene responsible for production of variant mRNA , 1985, Somatic cell and molecular genetics.

[50]  Laura A. Sullivan,et al.  Global Survey of Phosphotyrosine Signaling Identifies Oncogenic Kinases in Lung Cancer , 2007, Cell.

[51]  S. Dhanasekaran,et al.  Distinct classes of chromosomal rearrangements create oncogenic ETS gene fusions in prostate cancer , 2007, Nature.

[52]  K. Umesono,et al.  Chromosomal translocation t(15;17) in human acute promyelocytic leukemia fuses RARα with a novel putative transcription factor, PML , 1991, Cell.

[53]  Benjamin J. Raphael,et al.  Integrated Genomic Analyses of Ovarian Carcinoma , 2011, Nature.

[54]  J. Acquaviva,et al.  The multifaceted roles of the receptor tyrosine kinase ROS in development and cancer. , 2009, Biochimica et biophysica acta.

[55]  C. Molina,et al.  Inducibility and negative autoregulation of CREM: An alternative promoter directs the expression of ICER, an early response repressor , 1993, Cell.

[56]  Jeffrey W. Clark,et al.  Anaplastic lymphoma kinase inhibition in non-small-cell lung cancer. , 2010, The New England journal of medicine.

[57]  E. Borrelli,et al.  CREM gene: Use of alternative DNA-binding domains generates multiple antagonists of cAMP-induced transcription , 1991, Cell.

[58]  T. Nakanishi Drug transporters as targets for cancer chemotherapy. , 2007, Cancer genomics & proteomics.

[59]  B. Falini,et al.  Chronic eosinophilic leukaemia with ETV6‐NTRK3 fusion transcript in an elderly patient affected with pancreatic carcinoma , 2011, European journal of haematology.

[60]  K. Jensen,et al.  Epidermal growth factor receptor variant III contributes to cancer stem cell phenotypes in invasive breast carcinoma. , 2012, Cancer research.

[61]  S. Batalov,et al.  A gene atlas of the mouse and human protein-encoding transcriptomes. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[62]  G. Thomas,et al.  Gene fusion with an ETS DNA-binding domain caused by chromosome translocation in human tumours , 1992, Nature.

[63]  R. Lothe,et al.  Fusion gene microarray reveals cancer type‐specificity among fusion genes , 2011, Genes, chromosomes & cancer.

[64]  R Tibshirani,et al.  Combined microarray analysis of small cell lung cancer reveals altered apoptotic balance and distinct expression signatures of MYC family gene amplification , 2006, Oncogene.

[65]  P. Deloukas,et al.  Signatures of mutation and selection in the cancer genome , 2010, Nature.

[66]  W. Gerald,et al.  Characterization of the genomic breakpoint and chimeric transcripts in the EWS-WT1 gene fusion of desmoplastic small round cell tumor. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[67]  A. Tsao,et al.  ROS1 Rearrangements Define a Unique Molecular Class of Lung Cancers , 2012 .

[68]  Li Li,et al.  Exon Array Profiling Detects EML4-ALK Fusion in Breast, Colorectal, and Non–Small Cell Lung Cancers , 2009, Molecular Cancer Research.

[69]  A. Chinnaiyan,et al.  Functionally Recurrent Rearrangements of the MAST Kinase and Notch Gene Families in Breast Cancer , 2011, Nature Medicine.

[70]  S. Luo,et al.  Chimeric transcript discovery by paired-end transcriptome sequencing , 2009, Proceedings of the National Academy of Sciences.

[71]  Seungbok Lee,et al.  A transforming KIF5B and RET gene fusion in lung adenocarcinoma revealed from whole-genome and transcriptome sequencing. , 2012, Genome research.

[72]  B. Johansson,et al.  The impact of translocations and gene fusions on cancer causation , 2007, Nature Reviews Cancer.

[73]  E. Topol,et al.  Identification of four gene variants associated with myocardial infarction. , 2005, American journal of human genetics.

[74]  P. Marynen,et al.  Identification of novel fusion partners of ALK, the anaplastic lymphoma kinase, in anaplastic large‐cell lymphoma and inflammatory myofibroblastic tumor , 2002, Genes, chromosomes & cancer.

[75]  Arul M Chinnaiyan,et al.  PARP-1 inhibition as a targeted strategy to treat Ewing's sarcoma. , 2012, Cancer research.

[76]  J. Toguchida,et al.  Molecular genetics of sarcomas: Applications to diagnoses and therapy , 2009, Cancer science.

[77]  H. Aburatani,et al.  Identification of the transforming EML4–ALK fusion gene in non-small-cell lung cancer , 2007, Nature.

[78]  K. Tanaka,et al.  Fusion of ETV6 to neurotrophin-3 receptor TRKC in acute myeloid leukemia with t(12;15)(p13;q25). , 1999, Blood.

[79]  Francesca Demichelis,et al.  Discovery of non-ETS gene fusions in human prostate cancer using next-generation RNA sequencing. , 2011, Genome research.

[80]  P. Seeburg,et al.  Human epidermal growth factor receptor cDNA sequence and aberrant expression of the amplified gene in A431 epidermoid carcinoma cells , 1984, Nature.

[81]  Keara M. Lane,et al.  Oncogenic targeting of an activated tyrosine kinase to the Golgi apparatus in a glioblastoma , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[82]  Jon W. Huss,et al.  BioGPS: an extensible and customizable portal for querying and organizing gene annotation resources , 2009, Genome Biology.

[83]  P. Nowell,et al.  Panhandle and reverse-panhandle PCR enable cloning of der(11) and der(other) genomic breakpoint junctions of MLL translocations and identify complex translocation of MLL, AF-4, and CDK6 , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[84]  Robert J. Marinelli,et al.  A landscape effect in tenosynovial giant-cell tumor from activation of CSF1 expression by a translocation in a minority of tumor cells. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[85]  R. Gascoyne,et al.  ALK-positive diffuse large B-cell lymphoma is associated with Clathrin-ALK rearrangements: report of 6 cases. , 2003, Blood.

[86]  Manuel Hidalgo,et al.  Convergent structural alterations define SWItch/Sucrose NonFermentable (SWI/SNF) chromatin remodeler as a central tumor suppressive complex in pancreatic cancer , 2011, Proceedings of the National Academy of Sciences.

[87]  Jian Yu,et al.  Survey of Tyrosine Kinase Signaling Reveals ROS Kinase Fusions in Human Cholangiocarcinoma , 2011, PloS one.

[88]  T. Mak,et al.  Reconstitution of an active surface T3/T-cell antigen receptor by DNA transfer , 1985, Nature.

[89]  Siew Hong Leong,et al.  CD44-SLC1A2 Gene Fusions in Gastric Cancer , 2011, Science Translational Medicine.

[90]  Annette S. Kim,et al.  Systematic screen for tyrosine kinase rearrangements identifies a novel C6orf204‐PDGFRB fusion in a patient with recurrent T‐ALL and an associated myeloproliferative neoplasm , 2012, Genes, chromosomes & cancer.

[91]  A. Børresen-Dale,et al.  COMPLEX LANDSCAPES OF SOMATIC REARRANGEMENT IN HUMAN BREAST CANCER GENOMES , 2009, Nature.

[92]  P. Marynen,et al.  The EOL-1 cell line as an in vitro model for the study of FIP1L1-PDGFRA-positive chronic eosinophilic leukemia. , 2004, Blood.

[93]  P. Humphrey,et al.  Characterization of the epidermal growth factor receptor in human glioma cell lines and xenografts. , 1990, Cancer research.

[94]  Lee T. Sam,et al.  Transcriptome Sequencing to Detect Gene Fusions in Cancer , 2009, Nature.

[95]  Y. Ishikawa,et al.  A mouse model for EML4-ALK-positive lung cancer , 2008, Proceedings of the National Academy of Sciences.

[96]  Martin Zimmermann,et al.  Cloning of genes involved in chromosomal translocations by high-resolution single nucleotide polymorphism genomic microarray , 2008, Proceedings of the National Academy of Sciences.

[97]  R. Eeles,et al.  Detection of TMPRSS2-ERG translocations in human prostate cancer by expression profiling using GeneChip Human Exon 1.0 ST arrays. , 2008, The Journal of molecular diagnostics : JMD.

[98]  Peter Marynen,et al.  A tyrosine kinase created by fusion of the PDGFRA and FIP1L1 genes as a therapeutic target of imatinib in idiopathic hypereosinophilic syndrome. , 2003, The New England journal of medicine.