Eclipsing binary Trojan asteroid Patroclus: Thermal inertia from Spitzer observations

[1]  S. B. Nicholson,et al.  Lunar radiation and temperatures , 1930 .

[2]  D. Morrison,et al.  Thermal properties of the Galilean satellites , 1973 .

[3]  William P. Jones,et al.  Temperatures and thermophysical properties of the lunar outermost layer , 1975 .

[4]  J. B. Plescia,et al.  The geology of Ganymede , 1979 .

[5]  S. Weidenschilling,et al.  Hektor: Nature and origin of a binary asteroid , 1980 .

[6]  J. Spencer THE SURFACES OF EUROPA, GANYMEDE, AND CALLISTO: AN INVESTIGATION USING VOYAGER IRIS THERMAL INFRARED SPECTRA (JUPITER). , 1987 .

[7]  A. Harris,et al.  Photometric lightcurve observations and reduction techniques. , 1989 .

[8]  L. Lebofsky,et al.  Systematic biases in radiometric diameter determinations , 1989 .

[9]  Alan W. Harris,et al.  Application of photometric models to asteroids. , 1989 .

[10]  J. Spencer A rough-surface thermophysical model for airless planets , 1990 .

[11]  Richard P. Binzel,et al.  Trojan, Hilda, and Cybele asteroids: New lightcurve observations and analysis , 1992 .

[12]  G. Neukum,et al.  The Near-Earth Objects Follow-Up Program: First Results , 1995 .

[13]  J. Lagerros THERMAL PHYSICS OF ASTEROIDS. I. EFFECTS OF SHAPE, HEAT CONDUCTION AND BEAMING , 1996 .

[14]  G. Vogt Asteroids, Comets and Meteors , 1996 .

[15]  P. Christensen,et al.  Thermal conductivity measurements of particulate materials 2. Results , 1997 .

[16]  Alan W. Harris,et al.  On the Revision of Radiometric Albedos and Diameters of Asteroids , 1997 .

[17]  E. Shoemaker,et al.  Dynamical evolution of Jupiter's Trojan asteroids , 1997, Nature.

[18]  T. G. Muller,et al.  Asteroids as far-infrared photometric standards for ISOPHOT , 1998 .

[19]  Alan W. Harris,et al.  A Thermal Model for Near-Earth Asteroids , 1998 .

[20]  J. Lagerros THERMAL PHYSICS OF ASTEROIDS. IV. THERMAL INFRARED BEAMING , 1998 .

[21]  Spencer,et al.  Temperatures on europa from galileo photopolarimeter-radiometer: nighttime thermal anomalies , 1999, Science.

[22]  D. C. Jewitt,et al.  Population and Size Distribution of Small Jovian Trojan Asteroids , 2000, astro-ph/0004117.

[23]  Olivier Guyon,et al.  S/2001 (617) 1 , 2001 .

[24]  Stephan D. Price,et al.  The Supplemental IRAS Minor Planet Survey , 2002 .

[25]  F. Marzari,et al.  Origin and evolution of Trojan asteroids , 2002 .

[26]  David Jewitt,et al.  The Albedo Distribution of Jovian Trojan Asteroids , 2003 .

[27]  Robert H. Brown,et al.  Constraints on the surface composition of Trojan asteroids from near-infrared (0.8–4.0 μm) spectroscopy , 2003 .

[28]  E. Wright,et al.  The Spitzer Space Telescope Mission , 2004, astro-ph/0406223.

[29]  Robert T. Pappalardo,et al.  Geology of Europa , 2004 .

[30]  Timothy Edward Dowling,et al.  Jupiter : the planet, satellites, and magnetosphere , 2004 .

[31]  J. R. Houck,et al.  The Infrared Spectrograph (IRS) on the Spitzer Space Telescope , 2004, astro-ph/0406167.

[32]  L. Travis,et al.  Mapping of Io's thermal radiation by the Galileo photopolarimeter-radiometer (PPR) instrument , 2004 .

[33]  Joshua Patrick Emery,et al.  The surface composition of Trojan asteroids: constraints set by scattering theory , 2004 .

[34]  MARCS: MODEL STELLAR ATMOSPHERES AND THEIR APPLICATION TO THE PHOTOMETRIC CALIBRATION OF THE SPITZER SPACE TELESCOPE INFRARED SPECTROGRAPH (IRS) , 2004, astro-ph/0406104.

[35]  Alfred S. McEwen,et al.  The lithosphere and surface of Io , 2004 .

[36]  A. Harris,et al.  The surface properties of small asteroids: Peculiar Betulia—A case study , 2005 .

[37]  A. Harris The surface properties of small asteroids from thermal-infrared observations , 2005, Proceedings of the International Astronomical Union.

[38]  I. Gatley,et al.  Thermal response of Iapetus to an eclipse by Saturn's rings , 2005 .

[39]  K. Tsiganis,et al.  Chaotic capture of Jupiter's Trojan asteroids in the early Solar System , 2005, Nature.

[40]  Joseph D. Adams,et al.  The size and albedo of Rosetta fly-by target 21 Lutetia from new IRTF measurements and thermal modeling , 2006 .

[41]  S/2006 (624) 1 , 2006 .

[42]  Dale P. Cruikshank,et al.  Thermal emission spectroscopy (5.2–38 μm) of three Trojan asteroids with the Spitzer Space Telescope: Detection of fine-grained silicates , 2006 .

[43]  Paul J. Stomski,et al.  A low density of 0.8 g cm-3 for the Trojan binary asteroid 617 Patroclus , 2006, Nature.

[44]  David Jewitt,et al.  Densities of Solar System Objects from Their Rotational Light Curves , 2007 .

[45]  Z. Ivezic,et al.  The properties of Jovian Trojan asteroids listed in SDSS Moving Object Catalogue 3 , 2007, astro-ph/0703026.

[46]  A. Harris,et al.  Physical characterization of the potentially hazardous high-albedo Asteroid (33342) 1998 WT24 from thermal-infrared observations , 2007 .

[47]  Petr Pravec,et al.  Binary asteroid population 1. Angular momentum content , 2007 .

[48]  Michael Mueller,et al.  Surface Properties of Asteroids from Mid-Infrared Observations and Thermophysical Modeling , 2007, 1208.3993.

[49]  Stefano Mottola,et al.  Thermal inertia of near-Earth asteroids and implications for the magnitude of the Yarkovsky effect , 2007, 0704.1915.

[50]  J. A. Farrell,et al.  An Observing Campaign of the Mutual Events Within (617) Patroclus-Menoetius Binary Trojan System , 2007 .

[51]  Physical properties and orbital stability of the Trojan asteroids , 2008 .

[52]  R. Gil-Hutton,et al.  Taxonomy of asteroid families among the Jupiter Trojans: comparison between spectroscopic data and the Sloan Digital Sky Survey colors , 2007, 0712.0046.

[53]  Dale P. Cruikshank,et al.  The solar system beyond Neptune , 2008 .

[54]  Elisabetta Dotto,et al.  De Troianis: The Trojans in the Planetary System , 2008 .

[55]  Harold F. Levison,et al.  Considerations on the magnitude distributions of the Kuiper belt and of the Jupiter Trojans , 2009, 0903.0923.

[56]  Paolo Tanga,et al.  Thermal inertia of main belt asteroids smaller than 100 km from IRAS data , 2008, 0808.0869.