Most likely heteroscedastic Gaussian process regression
暂无分享,去创建一个
Wolfram Burgard | Kristian Kersting | Christian Plagemann | Patrick Pfaff | K. Kersting | W. Burgard | C. Plagemann | P. Pfaff | Christian Plagemann | Wolfram Burgard
[1] B. Silverman,et al. Some Aspects of the Spline Smoothing Approach to Non‐Parametric Regression Curve Fitting , 1985 .
[2] Yoshua Bengio,et al. Convergence Properties of the K-Means Algorithms , 1994, NIPS.
[3] M. Sigrist. Air monitoring by spectroscopic techniques , 1994 .
[4] P. M. Williams,et al. Using Neural Networks to Model Conditional Multivariate Densities , 1996, Neural Computation.
[5] Paul W. Goldberg,et al. Regression with Input-dependent Noise: A Gaussian Process Treatment , 1997, NIPS.
[6] Christopher K. I. Williams. Prediction with Gaussian Processes: From Linear Regression to Linear Prediction and Beyond , 1999, Learning in Graphical Models.
[7] M. Wand,et al. Kriging with Nonparametric Variance Function Estimation , 1999, Biometrics.
[8] Bernhard Schölkopf,et al. New Support Vector Algorithms , 2000, Neural Computation.
[9] Sebastian Thrun,et al. Probabilistic robotics , 2002, CACM.
[10] Carl E. Rasmussen,et al. Warped Gaussian Processes , 2003, NIPS.
[11] M. Yuan,et al. Doubly penalized likelihood estimator in heteroscedastic regression , 2004 .
[12] Alexander J. Smola,et al. Heteroscedastic Gaussian process regression , 2005, ICML.
[13] Gavin C. Cawley,et al. Estimating Predictive Variances with Kernel Ridge Regression , 2005, MLCW.
[14] Zoubin Ghahramani,et al. Variable Noise and Dimensionality Reduction for Sparse Gaussian processes , 2006, UAI.
[15] David J. Nott,et al. Semiparametric estimation of mean and variance functions for non-Gaussian data , 2006, Comput. Stat..
[16] R. Kohn,et al. Locally Adaptive Semiparametric Estimation of the Mean and Variance Functions in Regression Models , 2006 .
[17] Stefan Schaal,et al. Kernel Carpentry for Online Regression Using Randomly Varying Coefficient Model , 2007, IJCAI.
[18] Carl E. Rasmussen,et al. Gaussian processes for machine learning , 2005, Adaptive computation and machine learning.