Biomimetic smart nanopores and nanochannels.

Nature provides a huge range of biological materials, just as ion channels, with various smart functions over millions of years of evolution, and which serve as a big source of bio-inspiration for biomimetic materials. In this critical review, a strategy for the design and synthesis of biomimetic smart nanopores and nanochannels is presented and put into context with recent progress in this rapidly growing field from biological, inorganic, organic to composite nanopore and nanochannel materials, which can respond to single/multiple external stimuli, e.g., pH, temperature, light, and so on. This review is intended to utilize a specific responsive behavior for regulating ionic transport properties inside the single nanopore or nanochannel as an example to demonstrate the feasibility of the design strategy, and provide an overview of this fascinating research field (109 references).

[1]  C. Dekker,et al.  Biomimetic nanopores: learning from and about nature. , 2011, Trends in biotechnology.

[2]  W. Tremel,et al.  Metal ion affinity-based biomolecular recognition and conjugation inside synthetic polymer nanopores modified with iron-terpyridine complexes. , 2011, Journal of the American Chemical Society.

[3]  R. Bashir,et al.  Nanopore sensors for nucleic acid analysis. , 2011, Nature nanotechnology.

[4]  Xiao-Hong Cao,et al.  Smart Homopolymer Modification to Single Glass Conical Nanopore Channels: Dual‐Stimuli‐Actuated Highly Efficient Ion Gating , 2011 .

[5]  H. White,et al.  Nanopore detection of 8-oxo-7,8-dihydro-2'-deoxyguanosine in immobilized single-stranded DNA via adduct formation to the DNA damage site. , 2010, Journal of the American Chemical Society.

[6]  In-Kook Jun,et al.  A Biomimetic, Self‐Pumping Membrane , 2010, Advanced materials.

[7]  Lei Jiang,et al.  Integrating Ionic Gate and Rectifier Within One Solid‐State Nanopore via Modification with Dual‐Responsive Copolymer Brushes , 2010 .

[8]  Z. Siwy,et al.  Nanopores: Graphene opens up to DNA. , 2010, Nature nanotechnology.

[9]  R. Neumann,et al.  ATP-modulated ionic transport through synthetic nanochannels. , 2010, Chemical communications.

[10]  M. Niederweis,et al.  Nanopore DNA sequencing with MspA , 2010, Proceedings of the National Academy of Sciences.

[11]  Jin Zhai,et al.  Bio‐inspired Photoelectric Conversion Based on Smart‐Gating Nanochannels , 2010 .

[12]  C. Montemagno,et al.  One-Way Traffic of a Viral Motor Channel for Double-Stranded DNA Translocation , 2010, Nano letters (Print).

[13]  Omar Azzaroni,et al.  Responsive polymers end-tethered in solid-state nanochannels: when nanoconfinement really matters. , 2010, Journal of the American Chemical Society.

[14]  Xu Hou,et al.  A biomimetic asymmetric responsive single nanochannel. , 2010, Journal of the American Chemical Society.

[15]  Yazan N. Billeh,et al.  Applications of biological pores in nanomedicine, sensing, and nanoelectronics. , 2010, Current opinion in biotechnology.

[16]  L. A. Baker,et al.  Single‐Pore Membranes Gated by Microelectromagnetic Traps , 2010, Advanced materials.

[17]  Lin Li,et al.  A pH‐Gating Ionic Transport Nanodevice: Asymmetric Chemical Modification of Single Nanochannels , 2010, Advanced materials.

[18]  Javier Cervera,et al.  Layer-by-layer assembly of polyelectrolytes into ionic current rectifying solid-state nanopores: insights from theory and experiment. , 2010, Journal of the American Chemical Society.

[19]  Lei Jiang,et al.  Energy Harvesting with Single‐Ion‐Selective Nanopores: A Concentration‐Gradient‐Driven Nanofluidic Power Source , 2010 .

[20]  Xu Hou,et al.  Current rectification in temperature-responsive single nanopores. , 2010, Chemphyschem : a European journal of chemical physics and physical chemistry.

[21]  Yanlin Song,et al.  A biomimetic zinc activated ion channel. , 2010, Chemical communications.

[22]  Jin Zhai,et al.  Bioinspired Smart Gating of Nanochannels Toward Photoelectric‐Conversion Systems , 2010, Advanced materials.

[23]  Z. Siwy,et al.  Engineered voltage-responsive nanopores. , 2010, Chemical Society reviews.

[24]  Geoffrey A. Barrall,et al.  Monitoring the escape of DNA from a nanopore using an alternating current signal. , 2010, Journal of the American Chemical Society.

[25]  R. Neumann,et al.  Biosensing with functionalized single asymmetric polymer nanochannels. , 2010, Macromolecular bioscience.

[26]  Zuzanna S Siwy,et al.  Versatile ultrathin nanoporous silicon nitride membranes , 2009, Proceedings of the National Academy of Sciences.

[27]  Xu Hou,et al.  Learning from nature: building bio-inspired smart nanochannels. , 2009, ACS nano.

[28]  Salvador Mafe,et al.  Logic gates using nanofluidic diodes based on conical nanopores functionalized with polyprotic acid chains. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[29]  M. Ulbricht,et al.  Block Copolymer Photo-Grafted Poly(Ethylene Terephthalate) Capillary Pore Membranes Distinctly Switchable by Two Different Stimuli , 2009 .

[30]  Yanbo Xie,et al.  Nanofluidic diode generated by pH gradient inside track-etched conical nanopore , 2009, 2010 3rd International Nanoelectronics Conference (INEC).

[31]  Yugang Wang,et al.  Fabrication and investigation of single track-etched nanopore and its applications , 2009 .

[32]  C. Montemagno,et al.  Translocation of double stranded DNA through membrane adapted phi29 motor protein nanopore , 2009, Nature nanotechnology.

[33]  Liang-Yin Chu,et al.  Thermo-responsive gating membranes with controllable length and density of poly(N-isopropylacrylamide) chains grafted by ATRP method , 2009 .

[34]  Reinhard Neumann,et al.  Synthetic proton-gated ion channels via single solid-state nanochannels modified with responsive polymer brushes. , 2009, Nano letters.

[35]  G. Tsekouras,et al.  A surface-attached Ru complex operating as a rapid bistable molecular switch. , 2009, Chemical communications.

[36]  R. Neumann,et al.  Ionic transport through single solid-state nanopores controlled with thermally nanoactuated macromolecular gates. , 2009, Small.

[37]  Zuzanna S Siwy,et al.  Biosensing with nanofluidic diodes. , 2009, Journal of the American Chemical Society.

[38]  Xu Hou,et al.  A biomimetic potassium responsive nanochannel: G-quadruplex DNA conformational switching in a synthetic nanopore. , 2009, Journal of the American Chemical Society.

[39]  David Stoddart,et al.  Single-nucleotide discrimination in immobilized DNA oligonucleotides with a biological nanopore , 2009, Proceedings of the National Academy of Sciences.

[40]  Olivier Sudre,et al.  Control of ionic transport through gated single conical nanopores , 2009, Analytical and bioanalytical chemistry.

[41]  Liang-Yin Chu,et al.  Gating Characteristics of Thermo‐Responsive Membranes with Grafted Linear and Crosslinked Poly(N‐isopropylacrylamide) Gates , 2009 .

[42]  R. Neumann,et al.  A pH-tunable nanofluidic diode with a broad range of rectifying properties. , 2009, ACS nano.

[43]  G. B. Petersen,et al.  A proposition for single molecule DNA sequencing through a nanopore entropic trap , 2009 .

[44]  M. Ulbricht,et al.  Cylindrical Pores Responding to Two Different Stimuli via Surface-Initiated Atom Transfer Radical Polymerization for Synthesis of Grafted Diblock Copolymers , 2009 .

[45]  Reinhard Neumann,et al.  Single conical nanopores displaying pH-tunable rectifying characteristics. manipulating ionic transport with zwitterionic polymer brushes. , 2009, Journal of the American Chemical Society.

[46]  M. Niederweis,et al.  Single-molecule DNA detection with an engineered MspA protein nanopore , 2008, Proceedings of the National Academy of Sciences.

[47]  H. Bayley,et al.  Enhanced translocation of single DNA molecules through α-hemolysin nanopores by manipulation of internal charge , 2008, Proceedings of the National Academy of Sciences.

[48]  Reinhard Neumann,et al.  Biosensing and supramolecular bioconjugation in single conical polymer nanochannels. Facile incorporation of biorecognition elements into nanoconfined geometries. , 2008, Journal of the American Chemical Society.

[49]  David A. LaVan,et al.  Designing artificial cells to harness the biological ion concentration gradient. , 2008, Nature nanotechnology.

[50]  Long Chen,et al.  Electric energy generation in single track-etched nanopores , 2008 .

[51]  Lei Jiang,et al.  Bio‐Inspired, Smart, Multiscale Interfacial Materials , 2008 .

[52]  Róbert E. Gyurcsányi,et al.  Chemically-modified nanopores for sensing , 2008 .

[53]  Xu Hou,et al.  Gating of single synthetic nanopores by proton-driven DNA molecular motors. , 2008, Journal of the American Chemical Society.

[54]  K. Healy,et al.  Modifying the surface charge of single track-etched conical nanopores in polyimide , 2008, Nanotechnology.

[55]  Jong-Dal Hong,et al.  Photoresponsive ion gating function of an azobenzene polyelectrolyte multilayer spin-self-assembled on a nanoporous support. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[56]  S. Thayumanavan,et al.  Molecular discrimination inside polymer nanotubules. , 2008, Nature nanotechnology.

[57]  L. A. Baker,et al.  Nanopores: a makeover for membranes. , 2008, Nature nanotechnology.

[58]  Anne-Sophie Duwez,et al.  Microstructure and thermo-responsive behavior of poly(N-isopropylacrylamide) brushes grafted in nanopores of track-etched membranes , 2008 .

[59]  Z. Siwy,et al.  Nanofluidic Bipolar Transistors , 2008 .

[60]  Gregory W. Bishop,et al.  Resistive-pulse studies of proteins and protein/antibody complexes using a conical nanotube sensor. , 2007, Journal of the American Chemical Society.

[61]  R. Latorre,et al.  ThermoTRP channels as modular proteins with allosteric gating. , 2007, Cell calcium.

[62]  C. R. Martin,et al.  Developing synthetic conical nanopores for biosensing applications. , 2007, Molecular bioSystems.

[63]  Susan Daniel,et al.  Single ion-channel recordings using glass nanopore membranes. , 2007, Journal of the American Chemical Society.

[64]  Zuzanna S Siwy,et al.  Learning Nature's Way: Biosensing with Synthetic Nanopores , 2007, Science.

[65]  A. Meller,et al.  Chemically modified solid-state nanopores. , 2007, Nano letters.

[66]  C. Dekker Solid-state nanopores. , 2007, Nature nanotechnology.

[67]  M. Burns,et al.  Nanopore sequencing technology: nanopore preparations. , 2007, Trends in biotechnology.

[68]  C. Dekker,et al.  Power generation by pressure-driven transport of ions in nanofluidic channels. , 2007, Nano letters.

[69]  A. Majumdar,et al.  Rectification of ionic current in a nanofluidic diode. , 2007, Nano letters.

[70]  P. Bohn,et al.  Temperature-controlled flow switching in nanocapillary array membranes mediated by poly(N-isopropylacrylamide) polymer brushes grafted by atom transfer radical polymerization. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[71]  Dirk Trauner,et al.  Engineering light-gated ion channels. , 2006, Biochemistry.

[72]  P. McNaughton,et al.  Modulation of temperature-sensitive TRP channels. , 2006, Seminars in cell & developmental biology.

[73]  Muhammad Raza Shah,et al.  Synthetic ion channels and pores (2004-2005). , 2006, Chemical Society reviews.

[74]  H. Bayley,et al.  Temperature-responsive protein pores. , 2006, Journal of the American Chemical Society.

[75]  Shanshan Wu,et al.  Lithography-free formation of nanopores in plastic membranes using laser heating. , 2006, Nano letters.

[76]  Ronald W Davis,et al.  Current rectification with poly-l-lysine-coated quartz nanopipettes. , 2006, Nano letters.

[77]  A. Alcaraz,et al.  A pH-tunable nanofluidic diode: electrochemical rectification in a reconstituted single ion channel. , 2006, The journal of physical chemistry. B.

[78]  Henry S White,et al.  Photon gated transport at the glass nanopore electrode. , 2006, Journal of the American Chemical Society.

[79]  Zuzanna S Siwy,et al.  Calcium-induced voltage gating in single conical nanopores. , 2006, Nano letters.

[80]  Devens Gust,et al.  Control of nanopore wetting by a photochromic spiropyran: a light-controlled valve and electrical switch. , 2006, Nano letters.

[81]  Z. Siwy,et al.  Ion‐Current Rectification in Nanopores and Nanotubes with Broken Symmetry , 2006 .

[82]  Zuzanna S Siwy,et al.  Negative incremental resistance induced by calcium in asymmetric nanopores. , 2006, Nano letters.

[83]  L. A. Baker,et al.  Biomaterials and Biotechnologies Based on Nanotube Membranes , 2005 .

[84]  A. Majumdar,et al.  Polarity switching and transient responses in single nanotube nanofluidic transistors. , 2005, Physical review letters.

[85]  Ben L Feringa,et al.  A Light-Actuated Nanovalve Derived from a Channel Protein , 2005, Science.

[86]  Carol Korzeniewski,et al.  From nanochannel-induced proton conduction enhancement to a nanochannel-based fuel cell. , 2005, Nano letters.

[87]  Zuzanna Siwy,et al.  Protein biosensors based on biofunctionalized conical gold nanotubes. , 2005, Journal of the American Chemical Society.

[88]  E. Isacoff,et al.  Light-activated ion channels for remote control of neuronal firing , 2004, Nature Neuroscience.

[89]  Zuzanna Siwy,et al.  DNA-nanotube artificial ion channels. , 2004, Journal of the American Chemical Society.

[90]  H. White,et al.  The nanopore electrode. , 2004, Analytical chemistry.

[91]  S. Matile,et al.  Recent synthetic ion channels and pores , 2004 .

[92]  C. Dekker,et al.  Surface-charge-governed ion transport in nanofluidic channels. , 2004, Physical review letters.

[93]  D. C. Sun,et al.  A simple method for preparation of through-hole porous anodic alumina membrane , 2004 .

[94]  C. R. Martin,et al.  Conical nanopore membranes. Preparation and transport properties. , 2004, Analytical chemistry.

[95]  Plamen Atanassov,et al.  Photoregulation of Mass Transport through a Photoresponsive Azobenzene-Modified Nanoporous Membrane , 2004 .

[96]  C. Dekker,et al.  Fabrication of solid-state nanopores with single-nanometre precision , 2003, Nature materials.

[97]  C. Trautmann,et al.  Ion transport through asymmetric nanopores prepared by ion track etching , 2003 .

[98]  C. Trautmann,et al.  Preparation of synthetic nanopores with transport properties analogous to biological channels , 2003 .

[99]  Paul A Davies,et al.  A Novel Class of Ligand-gated Ion Channel Is Activated by Zn2+ * , 2003, The Journal of Biological Chemistry.

[100]  R. Spohr,et al.  Transport properties of thermo-responsive ion track membranes , 2001 .

[101]  H. Bayley,et al.  Stochastic sensors inspired by biology , 2001, Nature.

[102]  Matsuhiko Nishizawa,et al.  Controlling Ion‐Transport Selectivity in Gold Nanotubule Membranes , 2001 .

[103]  Michael J. Aziz,et al.  Ion-beam sculpting at nanometre length scales , 2001, Nature.

[104]  P. Apel,et al.  Track etching technique in membrane technology , 2001 .

[105]  Xiaofeng Lu,et al.  Simultaneous stochastic sensing of divalent metal ions , 2000, Nature Biotechnology.

[106]  Yoshihiro Ito,et al.  Signal‐responsive gating of porous membranes by polymer brushes , 2000 .

[107]  Shin-ichi Nakao,et al.  Development of a Fast Response Molecular Recognition Ion Gating Membrane , 1999 .

[108]  Stephen W. Feldberg,et al.  Current Rectification at Quartz Nanopipet Electrodes , 1997 .

[109]  Y. Li,et al.  Toward an efficient DNAzyme. , 1997, Biochemistry.

[110]  D. Branton,et al.  Characterization of individual polynucleotide molecules using a membrane channel. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[111]  Matsuhiko Nishizawa,et al.  Metal Nanotubule Membranes with Electrochemically Switchable Ion-Transport Selectivity , 1995, Science.

[112]  Z. Siwy,et al.  Making nanopores from nanotubes. , 2010, Nature nanotechnology.

[113]  Jennifer Griffiths,et al.  The realm of the nanopore. Interest in nanoscale research has skyrocketed, and the humble pore has become a king. , 2008, Analytical chemistry.

[114]  R. Eisenberg,et al.  Nanoprecipitation-assisted ion current oscillations. , 2008, Nature nanotechnology.

[115]  Jennifer Griffiths,et al.  The Realm of the Nanopore , 2008 .

[116]  Hirofumi Daiguji,et al.  Ion transport in nanofluidic channels , 2004 .

[117]  J. Ruppersberg Ion Channels in Excitable Membranes , 1996 .

[118]  Xu Hou,et al.  - 1-Supporting Information Fabrication of Stable Single Nanochannels with Controllable Ionic Rectification , 2009 .