[Chryseobacterium spp., a new opportunistic pathogen associated with cystic fibrosis?].

[1]  B. Ryall,et al.  Metabolic adaptations of Pseudomonas aeruginosa during cystic fibrosis chronic lung infections. , 2013, Environmental microbiology.

[2]  C. W. Davis,et al.  CFTR, mucins, and mucus obstruction in cystic fibrosis. , 2012, Cold Spring Harbor perspectives in medicine.

[3]  Jason W. Moore,et al.  Serial Analysis of the Gut and Respiratory Microbiome in Cystic Fibrosis in Infancy: Interaction between Intestinal and Respiratory Tracts and Impact of Nutritional Exposures , 2012, mBio.

[4]  R. Ozdemir,et al.  Trimethoprim–sulfamethoxazole treatment for meningitis owing to multidrug-resistant Elizabethkingia meningoseptica in an extremely low-birthweight, premature infant , 2012, Paediatrics and international child health.

[5]  G. Bhuyar,et al.  Urinary tract infection by Chryseobacterium indologenes. , 2012, Indian journal of medical microbiology.

[6]  Wen-Liang Yu,et al.  Clinical characteristics, antimicrobial susceptibilities, and outcomes of patients with Chryseobacterium indologenes bacteremia in an intensive care unit. , 2011, Japanese journal of infectious diseases.

[7]  J. Davies,et al.  Pseudomonas aeruginosa in cystic fibrosis: pathogenesis and new treatments. , 2011, British journal of hospital medicine.

[8]  R. Pai,et al.  Chryseobacterium meningosepticum bacteremia in diabetic nephropathy patient on hemodialysis , 2010, Indian journal of nephrology.

[9]  M. Mayers,et al.  Chryseobacterium indologenes bacteremia in an infant. , 2010, International journal of infectious diseases : IJID : official publication of the International Society for Infectious Diseases.

[10]  T. Alarcón,et al.  Diagnóstico microbiológico de la colonización-infección broncopulmonar en el paciente con fibrosis quística , 2009, Enfermedades Infecciosas y Microbiología Clínica.

[11]  C. Merlo,et al.  Persistent methicillin-resistant Staphylococcus aureus and rate of FEV1 decline in cystic fibrosis. , 2008, American journal of respiratory and critical care medicine.

[12]  C. Dowson,et al.  Burkholderia cepacia complex bacteria: opportunistic pathogens with important natural biology , 2008, Journal of applied microbiology.

[13]  V. Raia,et al.  Chryseobacterium respiratory tract infections in patients with cystic fibrosis. , 2007, The Journal of infection.

[14]  A. Oliver,et al.  Antimicrobial therapy for pulmonary pathogenic colonisation and infection by Pseudomonas aeruginosa in cystic fibrosis patients. , 2005, Clinical microbiology and infection : the official publication of the European Society of Clinical Microbiology and Infectious Diseases.

[15]  C. Segonds,et al.  Use of Amplified Ribosomal DNA Restriction Analysis for Identification of Ralstonia and Pandoraea Species: Interest in Determination of the Respiratory Bacterial Flora in Patients with Cystic Fibrosis , 2003, Journal of Clinical Microbiology.

[16]  Adam Baldwin,et al.  Burkholderia cepacia complex infection in patients with cystic fibrosis. , 2002, Journal of medical microbiology.

[17]  P. Vandamme,et al.  Characterization of Unusual Bacteria Isolated from Respiratory Secretions of Cystic Fibrosis Patients and Description of Inquilinus limosus gen. nov., sp. nov , 2002, Journal of Clinical Microbiology.

[18]  N. Woodford,et al.  Carbapenemases of Chryseobacterium(Flavobacterium) meningosepticum: Distribution ofblaB and Characterization of a Novel Metallo-β-Lactamase Gene, blaB3, in the Type Strain, NCTC 10016 , 2000, Antimicrobial Agents and Chemotherapy.

[19]  M. Ballmann,et al.  Long term follow up of changes in FEV1 and treatment intensity during Pseudomonas aeruginosacolonisation in patients with cystic fibrosis , 1998, Thorax.

[20]  J. Frère,et al.  Characterization and sequence of the Chryseobacterium (Flavobacterium) meningosepticum carbapenemase: a new molecular class B beta-lactamase showing a broad substrate profile. , 1998, The Biochemical journal.

[21]  M. Ferraro Performance standards for antimicrobial susceptibility testing , 2001 .