Perceptual analysis of distance measures for color constancy algorithms.

Color constancy algorithms are often evaluated by using a distance measure that is based on mathematical principles, such as the angular error. However, it is unknown whether these distance measures correlate to human vision. Therefore, the main goal of our paper is to analyze the correlation between several performance measures and the quality, obtained by using psychophysical experiments, of the output images generated by various color constancy algorithms. Subsequent issues that are addressed are the distribution of performance measures, suggesting additional and alternative information that can be provided to summarize the performance over a large set of images, and the perceptual significance of obtained improvements, i.e., the improvement that should be obtained before the difference becomes noticeable to a human observer.

[1]  W. Nagel Handbuch der Physiologie des Menschen. , 1905 .

[2]  W D Wright,et al.  Color Science, Concepts and Methods. Quantitative Data and Formulas , 1967 .

[3]  Gunther Wyszecki,et al.  Color Science: Concepts and Methods, Quantitative Data and Formulae, 2nd Edition , 2000 .

[4]  John W. Tukey,et al.  Exploratory Data Analysis. , 1979 .

[5]  E. Land The retinex theory of color vision. , 1977, Scientific American.

[6]  J. G. Kalbfleisch Probability and Statistical Inference , 1977 .

[7]  G. Buchsbaum A spatial processor model for object colour perception , 1980 .

[8]  M. H. Brill,et al.  Necessary and sufficient conditions for Von Kries chromatic adaptation to give color constancy , 1982, Journal of mathematical biology.

[9]  H. A. David Ranking from unbalanced paired-comparison data , 1987 .

[10]  M. Braga,et al.  Exploratory Data Analysis , 2018, Encyclopedia of Social Network Analysis and Mining. 2nd Ed..

[11]  J. Slater,et al.  Modern television systems : to HDTV and beyond , 1991 .

[12]  L. Arend,et al.  Simultaneous color constancy: paper with diverse Munsell values. , 1991, Journal of the Optical Society of America. A, Optics and image science.

[13]  H. Weisberg Central tendency and variability , 1991 .

[14]  M. S. Drew,et al.  Color constancy - Generalized diagonal transforms suffice , 1994 .

[15]  Matthew Anderson,et al.  Proposal for a Standard Default Color Space for the Internet - sRGB , 1996, CIC.

[16]  Mark D. Fairchild,et al.  Observer variability in metameric color matches using color reproduction media , 1997 .

[17]  D H Brainard,et al.  Bayesian color constancy. , 1997, Journal of the Optical Society of America. A, Optics, image science, and vision.

[18]  Brian V. Funt,et al.  Is Machine Colour Constancy Good Enough? , 1998, ECCV.

[19]  B. Funt,et al.  Diagonal versus affine transformations for color correction. , 2000, Journal of the Optical Society of America. A, Optics, image science, and vision.

[20]  Graham D. Finlayson,et al.  Color by Correlation: A Simple, Unifying Framework for Color Constancy , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[21]  B. Duval Commission internationale de l’éclairage (CIE) , 2001, Optique Photonique.

[22]  Brian V. Funt,et al.  A data set for color research , 2002 .

[23]  Ingeborg Tastl,et al.  Gamut Constrained Illuminant Estimation , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[24]  Brian V. Funt,et al.  A Large Image Database for Color Constancy Research , 2003, CIC.

[25]  D. M. Tait,et al.  Evaluation of an updated HRR color vision test , 2004, Visual Neuroscience.

[26]  David A. Forsyth,et al.  A novel algorithm for color constancy , 1990, International Journal of Computer Vision.

[27]  Peter B. Delahunt,et al.  Does human color constancy incorporate the statistical regularity of natural daylight? , 2004, Journal of vision.

[28]  Graham D. Finlayson,et al.  Shades of Gray and Colour Constancy , 2004, CIC.

[29]  Kinjiro Amano,et al.  Information limits on neural identification of colored surfaces in natural scenes , 2004, Visual Neuroscience.

[30]  Graham D. Finlayson,et al.  Colour constancy using the chromagenic constraint , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[31]  Steven D. Hordley,et al.  Scene illuminant estimation: Past, present, and future , 2006 .

[32]  S. D. Hordley,et al.  Reevaluation of color constancy algorithm performance. , 2006, Journal of the Optical Society of America. A, Optics, image science, and vision.

[33]  Marc Ebner,et al.  Evolving color constancy , 2006, Pattern Recognit. Lett..

[34]  Joost van de Weijer,et al.  Author Manuscript, Published in "ieee Transactions on Image Processing Edge-based Color Constancy , 2022 .

[35]  Graham D. Finlayson,et al.  The bright-chromagenic algorithm for illuminant estimation , 2007, Color Imaging Conference.

[36]  Eric Kirchner,et al.  Observation of visual texture of metallic and pearlescent materials , 2007 .

[37]  Cordelia Schmid,et al.  Using High-Level Visual Information for Color Constancy , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[38]  Theo Gevers,et al.  Color Constancy using Natural Image Statistics , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[39]  Andrew Blake,et al.  Bayesian color constancy revisited , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[40]  Raimondo Schettini,et al.  Improving Color Constancy Using Indoor–Outdoor Image Classification , 2008, IEEE Transactions on Image Processing.

[41]  Raimondo Schettini,et al.  Consensus-based framework for illuminant chromaticity estimation , 2008, J. Electronic Imaging.

[42]  Keigo Hirakawa,et al.  Color constancy beyond bags of pixels , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[43]  Joost van de Weijer,et al.  Generalized Gamut Mapping using Image Derivative Structures for Color Constancy , 2008, International Journal of Computer Vision.