1I/2017 ’Oumuamua-like Interstellar Asteroids as Possible Messengers from Dead Stars

Discovery of the first interstellar asteroid (ISA) - 1I/2017 'Oumuamua - raised a number of questions regarding its origin. Many of them relate to its lack of cometary activity, suggesting refractory composition of 'Oumuamua. Here we explore the possibility that 'Oumuamua-like ISAs are produced in tidal disruption events (TDEs) of refractory planetoids (asteroids, dwarf planets, etc.) by the white dwarfs (WDs). This idea is supported by existing spectroscopic observations of metal-polluted WDs, hinting at predominantly volatile-poor composition of accreted material. We show that such TDEs sourced by realistic planetary systems (including a population of >1000 km planetoids and massive perturbers - Neptune-to-Saturn mass planets) can eject to interstellar space up to 30% of planetary mass involved in them. Collisional fragmentation, caused by convergent vertical motion of the disrupted planetoid's debris inside the Roche sphere of the WD, channels most of the original mass into 0.1-1 km fragments, similar to 'Oumuamua. Such size spectrum of ISAs (very different from the top-heavy distributions expected in other scenarios) implies that every WD needs to eject ~0.3M_E of refractory material through TDEs (for ISA albedo of 0.2). This figure is consistent with the existing observations of WD metal pollution once we account for observational biases by using realistic models of circum-WD planetary systems. ISAs should exhibit kinematic characteristics similar to old, dynamically hot Galactic populations; we interpret 'Oumuamua's slow Galactic motion as a statistical fluctuation. ISA ejection in individual planetary TDEs is highly anisotropic, resulting in large fluctuations of their space density. We also show that other ISA production mechanisms involving stellar remnants - direct ejection by massive planets around WDs and SN explosions - have difficulty explaining 'Oumuamua-like ISAs.

[1]  B. Gaensicke,et al.  Hydrogen delivery onto white dwarfs from remnant exo-Oort cloud comets , 2014, 1409.7691.

[2]  P. Armitage,et al.  THE MASS AND SIZE DISTRIBUTION OF PLANETESIMALS FORMED BY THE STREAMING INSTABILITY. I. THE ROLE OF SELF-GRAVITY , 2015, 1512.00009.

[3]  C. Stark,et al.  THE LINK BETWEEN PLANETARY SYSTEMS, DUSTY WHITE DWARFS, AND METAL-POLLUTED WHITE DWARFS , 2012, 1201.0756.

[4]  R. Rafikov,et al.  PLANET FORMATION IN STELLAR BINARIES. II. OVERCOMING THE FRAGMENTATION BARRIER IN α CENTAURI AND γ CEPHEI-LIKE SYSTEMS , 2014, 1408.4819.

[5]  Thomas A. McGlynn,et al.  On the Nondetection of Extrasolar Comets , 1989 .

[6]  Ralf Kotulla,et al.  Interstellar Interloper 1I/2017 U1: Observations from the NOT and WIYN Telescopes , 2017, 1711.05687.

[7]  H. Perets,et al.  Post-main-sequence Evolution of Icy Minor Planets. II. Water Retention and White Dwarf Pollution around Massive Progenitor Stars , 2017, 1704.01165.

[8]  E. Villaver,et al.  Unstable low-mass planetary systems as drivers of white dwarf pollution , 2017, 1711.02940.

[9]  F. Faedi,et al.  On the abundance of circumbinary planets , 2014, 1404.5617.

[10]  B. Zuckerman,et al.  Ejection of Material—“Jurads”—from Post-main-sequence Planetary Systems , 2017, 1712.07247.

[11]  D. Muñoz,et al.  PLANETARY ENGULFMENT AS A TRIGGER FOR WHITE DWARF POLLUTION , 2016, 1607.04891.

[12]  John H. Debes,et al.  Are There Unstable Planetary Systems around White Dwarfs , 2002 .

[13]  K. Y. L. Su,et al.  Steady State Evolution of Debris Disks around A Stars , 2007 .

[14]  R. Michael Rich,et al.  The Initial-Final Mass Relation: Direct Constraints at the Low-Mass End , 2007, 0706.3894.

[15]  M. L. Lidov The evolution of orbits of artificial satellites of planets under the action of gravitational perturbations of external bodies , 1962 .

[16]  Robert Jedicke,et al.  Spectroscopy and thermal modelling of the first interstellar object 1I/2017 U1 ‘Oumuamua , 2017, Nature Astronomy.

[17]  Michael Marsset,et al.  Col-OSSOS: Colors of the Interstellar Planetesimal 1I/‘Oumuamua , 2017, 1711.06214.

[18]  J. Farihi,et al.  Stochastic accretion of planetesimals on to white dwarfs: constraints on the mass distribution of accreted material from atmospheric pollution , 2014, 1401.6173.

[19]  Rixin Li,et al.  Evidence for Universality in the Initial Planetesimal Mass Function , 2017, 1705.03889.

[20]  J. Heyl,et al.  Polluting white dwarfs with perturbed exo-comets , 2017, 1702.07682.

[21]  John Asher Johnson,et al.  Giant Planet Occurrence in the Stellar Mass-Metallicity Plane , 2010, 1005.3084.

[22]  Brian D. Metzger,et al.  Global models of runaway accretion in white dwarf debris discs , 2012, 1202.0557.

[23]  R. Rafikov,et al.  GLOBAL MODELING OF RADIATIVELY DRIVEN ACCRETION OF METALS FROM COMPACT DEBRIS DISKS ONTO WHITE DWARFS , 2011, 1106.1653.

[24]  B. Gaensicke,et al.  Formation of planetary debris discs around white dwarfs II: Shrinking extremely eccentric collisionless rings , 2015, 1505.06204.

[25]  R. Rafikov,et al.  METAL ACCRETION ONTO WHITE DWARFS CAUSED BY POYNTING–ROBERTSON DRAG ON THEIR DEBRIS DISKS , 2011, 1102.3153.

[26]  E. Mamajek Kinematics of the Interstellar Vagabond 1I/‘Oumuamua (A/2017 U1) , 2017, 1710.11364.

[27]  M. Jura A Tidally Disrupted Asteroid around the White Dwarf G29-38 , 2003 .

[28]  J. Truran,et al.  On relative supernova rates and nucleosynthesis roles , 1989 .

[29]  Eric Gaidos,et al.  What and whence 1I/`Oumuamua: a contact binary from the debris of a young planetary system? , 2017, 1712.06721.

[30]  Charles H. Townes,et al.  The nature of the central parsec of the Galaxy , 1982 .

[31]  David E. Trilling,et al.  Implications for Planetary System Formation from Interstellar Object 1I/2017 U1 (‘Oumuamua) , 2017, 1711.01344.

[32]  Erik Asphaug,et al.  NUMERICAL MODELING OF THE DISRUPTION OF COMET D/1993 F2 SHOEMAKER–LEVY 9 REPRESENTING THE PROGENITOR BY A GRAVITATIONALLY BOUND ASSEMBLAGE OF RANDOMLY SHAPED POLYHEDRA , 2012, 1207.3386.

[33]  Anders Johansen,et al.  Initial mass function of planetesimals formed by the streaming instability , 2016, 1611.02285.

[34]  Larry Denneau,et al.  A brief visit from a red and extremely elongated interstellar asteroid , 2017, Nature.

[35]  E. Villaver,et al.  FORETELLINGS OF RAGNARÖK: WORLD-ENGULFING ASYMPTOTIC GIANTS AND THE INHERITANCE OF WHITE DWARFS , 2012, 1210.0328.

[36]  University of Cambridge,et al.  Stellar disruption by a supermassive black hole: is the light curve really proportional to t -5/3 ? , 2008, 0810.1288.

[37]  M. Ćuk,et al.  1I/‘Oumuamua as a Tidal Disruption Fragment from a Binary Star System , 2017, 1712.01823.

[38]  Dimitri Veras,et al.  Formation of planetary debris discs around white dwarfs – I. Tidal disruption of an extremely eccentric asteroid , 2014, 1409.2493.

[39]  Sarah T. Stewart,et al.  VELOCITY-DEPENDENT CATASTROPHIC DISRUPTION CRITERIA FOR PLANETESIMALS , 2009 .

[40]  M. A. Barstow,et al.  Rocky planetesimals as the origin of metals in DZ stars , 2010, 1001.5025.

[41]  Jason T. Wright,et al.  A disintegrating minor planet transiting a white dwarf , 2015, Nature.

[42]  S. Komossa,et al.  Tidal disruption of stars by supermassive black holes: Status of observations , 2015, 1505.01093.

[43]  B. Zuckerman,et al.  The Chemical Composition of an Extrasolar Kuiper-Belt-Object , 2017, 1702.02868.

[44]  M. Fukugita,et al.  The Cosmic Energy Inventory , 2004, astro-ph/0406095.

[45]  M. Jura,et al.  WATER FRACTIONS IN EXTRASOLAR PLANETESIMALS , 2011, 1110.1774.

[46]  R. Paul Butler,et al.  A New Planet around an M Dwarf: Revealing a Correlation between Exoplanets and Stellar Mass , 2007, 0707.2409.

[47]  S. Tremaine,et al.  SCATTERING OUTCOMES OF CLOSE-IN PLANETS: CONSTRAINTS ON PLANET MIGRATION , 2014, 1401.4457.

[48]  M. Jura AN UPPER BOUND TO THE SPACE DENSITY OF INTERSTELLAR COMETS , 2011, 1102.4319.

[49]  A. Johansen,et al.  Growth of asteroids, planetary embryos, and Kuiper belt objects by chondrule accretion , 2015, Science Advances.

[50]  Yoshihide Kozai,et al.  Secular perturbations of asteroids with high inclination and eccentricity , 1962 .

[51]  M. Hollands,et al.  Cool DZ white dwarfs II: compositions and evolution of old remnant planetary systems , 2018, 1801.07714.

[52]  Sean N. Raymond,et al.  Implications of the interstellar object 1I/'Oumuamua for planetary dynamics and planetesimal formation , 2017, 1711.09599.

[53]  A. Dobrovolskis,et al.  Tidal disruption of solid bodies , 1987 .

[54]  S. Morrison,et al.  PLANETARY CHAOTIC ZONE CLEARING: DESTINATIONS AND TIMESCALES , 2014, 1411.1378.

[55]  Qicheng Zhang,et al.  1I/2017 U1 (‘Oumuamua) is Hot: Imaging, Spectroscopy, and Search of Meteor Activity , 2017, 1711.02320.

[56]  Aaron Do,et al.  Interstellar Interlopers: Number Density and Origin of ‘Oumuamua-like Objects , 2018, 1801.02821.

[57]  S. Tremaine,et al.  Tidal disruption of viscous bodies , 1992 .

[58]  R. Rafikov,et al.  BIRTH LOCATIONS OF THE KEPLER CIRCUMBINARY PLANETS , 2015, 1504.00460.

[59]  A. Moro-martin,et al.  Debris disks as signposts of terrestrial planet formation , 2011, 1104.0007.

[60]  B. Zuckerman,et al.  Characterizing the Chemistry of Planetary Materials Around White Dwarf Stars , 2017 .

[61]  B. Hansen,et al.  Eccentric planets and stellar evolution as a cause of polluted white dwarfs , 2014, 1401.5470.

[62]  H. Perets,et al.  Post-main-sequence Evolution of Icy Minor Planets. III. Water Retention in Dwarf Planets and Exomoons and Implications for White Dwarf Pollution , 2017, 1708.07489.

[63]  Simon Portegies Zwart,et al.  The origin of interstellar asteroidal objects like 1I/2017 U1 , 2017, 1711.03558.

[64]  Martin J. Rees,et al.  Tidal disruption of stars by black holes of 106–108 solar masses in nearby galaxies , 1988, Nature.

[65]  Sebastian Kurowski,et al.  Tumbling motion of 1I/‘Oumuamua and its implications for the body’s distant past , 2018, Nature Astronomy.

[66]  W. M. Wood-Vasey,et al.  The Pan-STARRS1 Surveys , 2016, 1612.05560.

[67]  James Binney,et al.  Galactic Dynamics: Second Edition , 2008 .

[68]  S. Dong,et al.  The rate of WD-WD head-on collisions may be as high as the SNe Ia rate , 2012, 1211.4584.

[69]  Mohamad Ali-Dib,et al.  Ejection of rocky and icy material from binary star systems: implications for the origin and composition of 1I/‘Oumuamua , 2017, 1712.04435.

[70]  M. Jura,et al.  THE SURVIVAL OF WATER WITHIN EXTRASOLAR MINOR PLANETS , 2010, 1001.2595.

[71]  A. Loeb,et al.  Consequences of Strong Compression in Tidal Disruption Events , 2012, 1210.3374.

[72]  J. Farihi Circumstellar Debris and Pollution at White Dwarf Stars , 2016, 1604.03092.

[73]  J. S. Dohnanyi Collisional model of asteroids and their debris , 1969 .

[74]  R. Rafikov Runaway accretion of metals from compact discs of debris on to white dwarfs , 2011, 1102.4343.

[75]  Eva Villaver,et al.  HOT JUPITERS AND COOL STARS , 2014, 1407.7879.

[76]  Konstantin Batygin,et al.  On the Consequences of the Detection of an Interstellar Asteroid , 2017, 1711.02260.

[77]  B. Zuckerman,et al.  ROCKY EXTRASOLAR PLANETARY COMPOSITIONS DERIVED FROM EXTERNALLY POLLUTED WHITE DWARFS , 2011, 1108.1565.

[78]  Larry Denneau,et al.  An Observational Upper Limit on the Interstellar Number Density of Asteroids and Comets , 2017, 1702.02237.

[79]  Andreas Quirrenbach,et al.  Precise Radial Velocities of Giant Stars VII. Occurrence Rate of Giant Extrasolar Planets as a Function of Mass and Metallicity , 2014, 1412.4634.

[80]  C. Bergfors,et al.  Signs of a faint disc population at polluted white dwarfs , 2014, 1408.0229.

[81]  E. S. Phinney,et al.  MANIFESTATIONS OF A MASSIVE BLACK HOLE IN THE GALACTIC CENTER , 1989 .

[82]  B. Zuckerman,et al.  Throwing Icebergs at White Dwarfs , 2017, 1704.08701.

[83]  B. Davidsson,et al.  Tidal Splitting and Rotational Breakup of Solid Spheres , 1999 .

[84]  Andrew J. Connolly,et al.  APO Time-resolved Color Photometry of Highly Elongated Interstellar Object 1I/‘Oumuamua , 2017, 1711.04927.

[85]  K. Holsapple,et al.  On the fragmentation of asteroids and planetary satellites , 1990 .