Automating prelaunch diagnostics for launch vehicles offers three potential benefits. First, it potentially improves safety by detecting faults that might otherwise have been missed so that they can be corrected before launch. Second, it potentially reduces launch delays by more quickly diagnosing the cause of anomalies that occur during prelaunch processing. Reducing launch delays will be critical to the success of NASA's planned future missions that require in-orbit rendezvous. Third, it potentially reduces costs by reducing both launch delays and the number of people needed to monitor the prelaunch process. NASA is currently developing the Ares I launch vehicle to bring the Orion capsule and its crew of four astronauts to low-earth orbit on their way to the moon. Ares I-X will be the first unmanned test flight of Ares I. It is scheduled to launch on October 27, 2009. The Ares I-X Ground Diagnostic Prototype is a prototype ground diagnostic system that will provide anomaly detection, fault detection, fault isolation, and diagnostics for the Ares I-X first-stage thrust vector control (TVC) and for the associated ground hydraulics while it is in the Vehicle Assembly Building (VAB) at John F. Kennedy Space Center (KSC) and on the launch pad. It will serve as a prototype for a future operational ground diagnostic system for Ares I. The prototype combines three existing diagnostic tools. The first tool, TEAMS (Testability Engineering and Maintenance System), is a model-based tool that is commercially produced by Qualtech Systems, Inc. It uses a qualitative model of failure propagation to perform fault isolation and diagnostics. We adapted an existing TEAMS model of the TVC to use for diagnostics and developed a TEAMS model of the ground hydraulics. The second tool, Spacecraft Health Inference Engine (SHINE), is a rule-based expert system developed at the NASA Jet Propulsion Laboratory. We developed SHINE rules for fault detection and mode identification. The prototype uses the outputs of SHINE as inputs to TEAMS. The third tool, the Inductive Monitoring System (IMS), is an anomaly detection tool developed at NASA Ames Research Center and is currently used to monitor the International Space Station Control Moment Gyroscopes. IMS automatically "learns" a model of historical nominal data in the form of a set of clusters and signals an alarm when new data fails to match this model. IMS offers the potential to detect faults that have not been modeled. The three tools have been integrated and deployed to Hangar AE at KSC where they interface with live data from the Ares I-X vehicle and from the ground hydraulics. The outputs of the tools are displayed on a console in Hangar AE, one of the locations from which the Ares I-X launch will be monitored. The full paper will describe how the prototype performed before the launch. It will include an analysis of the prototype's accuracy, including false-positive rates, false-negative rates, and receiver operating characteristics (ROC) curves. It will also include a description of the prototype's computational requirements, including CPU usage, main memory usage, and disk usage. If the prototype detects any faults during the prelaunch period then the paper will include a description of those faults. Similarly, if the prototype has any false alarms then the paper will describe them and will attempt to explain their causes.
[1]
Ryan Mackey,et al.
General Purpose Data-Driven System Monitoring for Space Operations
,
2009
.
[2]
David J. Atkinson,et al.
Software For Development Of Expert Systems
,
1990
.
[3]
M. Schwabacher,et al.
Pre-Launch Diagnostics for Launch Vehicles
,
2008,
2008 IEEE Aerospace Conference.
[4]
Stephan R. Davis,et al.
Ares I-X Flight Test--The Future Begins Here
,
2008
.
[5]
Rodney A. Martin.
Evaluation of Anomaly Detection Capability for Ground-Based Pre-Launch Shuttle Operations
,
2010
.
[6]
Andrew P. Bradley,et al.
The use of the area under the ROC curve in the evaluation of machine learning algorithms
,
1997,
Pattern Recognit..