Striatonigrostriatal Pathways in Primates Form an Ascending Spiral from the Shell to the Dorsolateral Striatum

Clinical manifestations in diseases affecting the dopamine system include deficits in emotional, cognitive, and motor function. Although the parallel organization of specific corticostriatal pathways is well documented, mechanisms by which dopamine might integrate information across different cortical/basal ganglia circuits are less well understood. We analyzed a collection of retrograde and anterograde tracing studies to understand how the striatonigrostriatal (SNS) subcircuit directs information flow between ventromedial (limbic), central (associative), and dorsolateral (motor) striatal regions. When viewed as a whole, the ventromedial striatum projects to a wide range of the dopamine cells and receives a relatively small dopamine input. In contrast, the dorsolateral striatum (DLS) receives input from a broad expanse of dopamine cells and has a confined input to the substantia nigra (SN). The central striatum (CS) receives input from and projects to a relatively wide range of the SN. The SNS projection from each striatal region contains three substantia nigra components: a dorsal group of nigrostriatal projecting cells, a central region containing both nigrostriatal projecting cells and its reciprocal striatonigral terminal fields, and a ventral region that receives a specific striatonigral projection but does not contain its reciprocal nigrostriatal projection. Examination of results from multiple tracing experiments simultaneously demonstrates an interface between different striatal regions via the midbrain dopamine cells that forms an ascending spiral between regions. The shell influences the core, the core influences the central striatum, and the central striatum influences the dorsolateral striatum. This anatomical arrangement creates a hierarchy of information flow and provides an anatomical basis for the limbic/cognitive/motor interface via the ventral midbrain.

[1]  J. Szabo,et al.  Topical distribution of the striatal efferents in the monkey , 1962 .

[2]  J. Szabo,et al.  The efferent projections of the putamen in the monkey. , 1967, Experimental neurology.

[3]  J. Szabo Projections from the body of the caudate nucleus in the rhesus monkey. , 1970, Experimental neurology.

[4]  M B Carpenter,et al.  Nigrostriatal and nigrothalamic fibers in the rhesus monkey , 1972, The Journal of comparative neurology.

[5]  H. Künzle Bilateral projections from precentral motor cortex to the putamen and other parts of the basal ganglia. An autoradiographic study inMacaca fascicularis , 1975, Brain Research.

[6]  H. Künzle An autoradiographic analysis of the efferent connections from premotor and adjacent prefrontal regions (areas 6 and 9) in macaca fascicularis. , 1978, Brain, behavior and evolution.

[7]  J. Fallon,et al.  Substantia nigra dopamine neurons: separate populations project to neostriatum and allocortex , 1978, Neuroscience Letters.

[8]  W. Nauta,et al.  Crossroads of Limbic and Striatal Circuitry: Hypothalamo-Nigral Connections , 1978 .

[9]  G. P. Smith,et al.  Efferent connections and nigral afferents of the nucleus accumbens septi in the rat , 1978, Neuroscience.

[10]  J. Yelnik,et al.  Demonstration of the existence of small local circuit neurons in the Golgi-stained primate substantia nigra , 1979, Brain Research.

[11]  A. Grace,et al.  Paradoxical GABA excitation of nigral dopaminergic cells: indirect mediation through reticulata inhibitory neurons. , 1979, European journal of pharmacology.

[12]  E. Rolls,et al.  Neurophysiological analysis of brain-stimulation reward in the monkey , 1980, Brain Research.

[13]  J. Szabo Organization of the ascending striatal afferents in monkeys , 1980, The Journal of comparative neurology.

[14]  Douglas L. Jones,et al.  From motivation to action: Functional interface between the limbic system and the motor system , 1980, Progress in Neurobiology.

[15]  P. Somogyi,et al.  Monosynaptic input from the nucleus accumbens-ventral striatum region to retrogradely labelled nigrostriatal neurones , 1981, Brain Research.

[16]  L. Heimer,et al.  Ventral striatum and ventral pallidum Components of the motor system? , 1982, Trends in Neurosciences.

[17]  A. Parent,et al.  The subcortical afferents to caudate nucleus and putamen in primate: A fluorescence retrograde double labeling study , 1983, Neuroscience.

[18]  A. Parent,et al.  The striatopallidal and striatonigral projections: two distinct fiber systems in primate , 1984, Brain Research.

[19]  L. Heimer,et al.  Cholecystokinin innervation of the ventral striatum: A morphological and radioimmunological study , 1985, Neuroscience.

[20]  P. Goldman-Rakic,et al.  Topography of Corticostriatal Projections in Nonhuman Primates and Implications for Functional Parcellation of the Neostriatum , 1986 .

[21]  A. Damasio,et al.  Severe disturbance of higher cognition after bilateral frontal lobe ablation: Patient EVR , 1986 .

[22]  C. Gerfen,et al.  The neostriatal mosaic: II. Patch- and matrix-directed mesostriatal dopaminergic and non-dopaminergic systems , 1987, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[23]  R. Wise,et al.  Brain dopamine and reward. , 1989, Annual review of psychology.

[24]  P. Goldman-Rakic,et al.  Topographic intermingling of striatonigral and striatopallidal neurons in the rhesus monkey , 1990, The Journal of comparative neurology.

[25]  A. Parent,et al.  Dopaminergic neurons expressing calbindin in normal and parkinsonian monkeys. , 1991, NeuroReport.

[26]  J. Hedreen,et al.  Organization of striatopallidal, striatonigral, and nigrostriatal projections in the macaque , 1991, The Journal of comparative neurology.

[27]  R. North,et al.  Two types of neurone in the rat ventral tegmental area and their synaptic inputs. , 1992, The Journal of physiology.

[28]  W. Schultz,et al.  Responses of monkey dopamine neurons during learning of behavioral reactions. , 1992, Journal of neurophysiology.

[29]  D. S. Zahm,et al.  On the significance of subterritories in the “accumbens” part of the rat ventral striatum , 1992, Neuroscience.

[30]  A. Grace,et al.  Role of the subthalamic nucleus in the regulation of nigral dopamine neuron activity , 1992, Synapse.

[31]  W. Schultz Activity of dopamine neurons in the behaving primate , 1992 .

[32]  S. Haber,et al.  The organization of the descending ventral pallidal projections in the monkey , 1993, The Journal of comparative neurology.

[33]  W. Schultz,et al.  Responses of monkey dopamine neurons to reward and conditioned stimuli during successive steps of learning a delayed response task , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[34]  S. Haber,et al.  Primate cingulostriatal projection: Limbic striatal versus sensorimotor striatal input , 1994, The Journal of comparative neurology.

[35]  J. Penney,et al.  Organization of N‐methyl‐D‐aspartate glutamate receptor gene expression in the basal ganglia of the rat , 1994, The Journal of comparative neurology.

[36]  S. N. Haber,et al.  The organization of midbrain projections to the ventral striatum in the primate , 1994, Neuroscience.

[37]  S. Haber,et al.  Primate striatonigral projections: A comparison of the sensorimotor‐related striatum and the ventral striatum , 1994, The Journal of comparative neurology.

[38]  A. Parent,et al.  Multiple striatal representation in primate substantia nigra , 1994, The Journal of comparative neurology.

[39]  S. Haber,et al.  The organization of midbrain projections to the striatum in the primate: Sensorimotor-related striatum versus ventral striatum , 1994, Neuroscience.

[40]  A. Flaherty,et al.  Input-output organization of the sensorimotor striatum in the squirrel monkey , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[41]  J. Price,et al.  Architectonic subdivision of the orbital and medial prefrontal cortex in the macaque monkey , 1994, The Journal of comparative neurology.

[42]  Daniel Johnston,et al.  Dendritic attenuation of synaptic potentials and currents: the role of passive membrane properties , 1994, Trends in Neurosciences.

[43]  Micaela Morelli,et al.  Modulatory functions of neurotransmitters in the striatum: ACh/dopamine/NMDA interactions , 1994, Trends in Neurosciences.

[44]  P. Goldman-Rakic Working memory dysfunction in schizophrenia. , 1994, The Journal of neuropsychiatry and clinical neurosciences.

[45]  S. Haber,et al.  Subsets of midbrain dopaminergic neurons in monkeys are distinguished by different levels of mRNA for the dopamine transporter: Comparison with the mRNA for the D2 receptor, tyrosine hydroxylase and calbindin immunoreactivity , 1995, The Journal of comparative neurology.

[46]  S de las Heras,et al.  Organization of thalamic projections to the ventral striatum in the primate , 1995, The Journal of comparative neurology.

[47]  J. Price,et al.  Limbic connections of the orbital and medial prefrontal cortex in macaque monkeys , 1995, The Journal of comparative neurology.

[48]  M. Starr Glutamate/dopamine D1/D2 balance in the basal ganglia and its relevance to Parkinson' disease , 1995, Synapse.

[49]  H. Fibiger,et al.  Dopaminergic correlates of motivated behavior: importance of drive , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[50]  E. Lynd-Balta,et al.  The orbital and medial prefrontal circuit through the primate basal ganglia , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[51]  N. Varney,et al.  Psychopharmacology: The Fourth Generation of Progress. , 1996 .

[52]  J. Wickens,et al.  Dopamine reverses the depression of rat corticostriatal synapses which normally follows high-frequency stimulation of cortex In vitro , 1996, Neuroscience.

[53]  J. Wickens,et al.  Dopamine cells are neurones too! , 1996, Trends in Neurosciences.

[54]  H. Berendse,et al.  Densitometrical analysis of opioid receptor ligand binding in the human striatum—I. Distribution of μ opioid receptor defines shell and core of the ventral striatum , 1996, Neuroscience.

[55]  S. Haber,et al.  Shell and core in monkey and human nucleus accumbens identified with antibodies to calbindin‐D28k , 1996, The Journal of comparative neurology.

[56]  S. Charpier,et al.  The lamellar organization of the rat substantia nigra pars reticulata: Segregated patterns of striatal afferents and relationship to the topography of corticostriatal projections , 1996, Neuroscience.

[57]  H. Groenewegen,et al.  The nucleus accumbens: gateway for limbic structures to reach the motor system? , 1996, Progress in brain research.

[58]  A. Gratton,et al.  Behavior-Relevant Changes in Nucleus Accumbens Dopamine Transmission Elicited by Food Reinforcement: An Electrochemical Study in Rat , 1996, The Journal of Neuroscience.

[59]  Peter Dayan,et al.  A Neural Substrate of Prediction and Reward , 1997, Science.

[60]  J. Fuster The Prefrontal Cortex , 1997 .

[61]  R E Harlan,et al.  The accumbens: beyond the core-shell dichotomy. , 1997, The Journal of neuropsychiatry and clinical neurosciences.

[62]  Suzanne N. Haber,et al.  Insular Cortical Projections to Functional Regions of the Striatum Correlate with Cortical Cytoarchitectonic Organization in the Primate , 1997, The Journal of Neuroscience.

[63]  D. Johnston,et al.  A Synaptically Controlled, Associative Signal for Hebbian Plasticity in Hippocampal Neurons , 1997, Science.

[64]  S. Haber,et al.  The primate substantia nigra and VTA: integrative circuitry and function. , 1997, Critical reviews in neurobiology.

[65]  P. Calabresi,et al.  Synaptic plasticity and physiological interactions between dopamine and glutamate in the striatum , 1997, Neuroscience & Biobehavioral Reviews.

[66]  S. Yamaguchi,et al.  Contributions of the Dopaminergic System to Voluntary and Automatic Orienting of Visuospatial Attention , 1998, The Journal of Neuroscience.

[67]  C. Cepeda,et al.  Dopamine and N-Methyl-D- Aspartate Receptor Interactions in the Neostriatum , 1998, Developmental Neuroscience.