Role of inflammation, oxidative stress, and autonomic nervous system activation during the development of right and left cardiac remodeling in experimental pulmonary arterial hypertension

[1]  Julian F. Thayer,et al.  Heart rate variability and inflammation: A meta-analysis of human studies , 2019, Brain, Behavior, and Immunity.

[2]  T. Ishida,et al.  Liposome co-incubation with cancer cells secreted exosomes (extracellular vesicles) with different proteins expressions and different uptake pathways , 2018, Scientific Reports.

[3]  M. Eghbali,et al.  Autonomic nervous system involvement in pulmonary arterial hypertension , 2017, Respiratory Research.

[4]  François M Abboud,et al.  Autonomic regulation of the immune system in cardiovascular diseases. , 2017, Advances in physiology education.

[5]  M. Jasińska-Stroschein,et al.  Animal models of pulmonary arterial hypertension: A systematic review and meta‐analysis of data from 6126 animals , 2017, Pharmacological research.

[6]  M. Irigoyen,et al.  Cholinergic Stimulation Improves Oxidative Stress and Inflammation in Experimental Myocardial Infarction , 2017, Scientific Reports.

[7]  K. Casali,et al.  Bucindolol improves right ventricle function in rats with pulmonary arterial hypertension through the reversal of autonomic imbalance , 2017, European journal of pharmacology.

[8]  A. Belló-Klein,et al.  Effects of aerobic exercise training on metabolism of nitric oxide and endothelin-1 in lung parenchyma of rats with pulmonary arterial hypertension , 2017, Molecular and Cellular Biochemistry.

[9]  P. Quesenberry,et al.  Exosomes induce and reverse monocrotaline-induced pulmonary hypertension in mice. , 2016, Cardiovascular research.

[10]  P. Ferdinandy,et al.  Specific Mechanisms Underlying Right Heart Failure: The Missing Upregulation of Superoxide Dismutase-2 and Its Decisive Role in Antioxidative Defense. , 2015, Antioxidants & redox signaling.

[11]  M. Raizada,et al.  Selective activation of angiotensin AT2 receptors attenuates progression of pulmonary hypertension and inhibits cardiopulmonary fibrosis , 2015, British journal of pharmacology.

[12]  M. Humbert,et al.  New molecular targets of pulmonary vascular remodeling in pulmonary arterial hypertension: importance of endothelial communication. , 2015, Chest.

[13]  L. O’Driscoll,et al.  Biological properties of extracellular vesicles and their physiological functions , 2015, Journal of extracellular vesicles.

[14]  M. Humbert,et al.  Advances in Therapeutic Interventions for Patients With Pulmonary Arterial Hypertension , 2014, Circulation.

[15]  M. Humbert,et al.  Pulmonary arterial hypertension , 2013, Orphanet Journal of Rare Diseases.

[16]  Dao-xin Wang,et al.  The effects and mechanism of ginsenoside Rg1 on myocardial remodeling in an animal model of chronic thromboembolic pulmonary hypertension , 2013, European Journal of Medical Research.

[17]  M. Valero-Muñoz,et al.  Left and Right Ventricle Late Remodeling Following Myocardial Infarction in Rats , 2013, PloS one.

[18]  L. Farkas,et al.  The monocrotaline model of pulmonary hypertension in perspective. , 2012, American journal of physiology. Lung cellular and molecular physiology.

[19]  A. Belló-Klein,et al.  Association of the time course of pulmonary arterial hypertension with changes in oxidative stress in the left ventricle , 2011, Clinical and experimental pharmacology & physiology.

[20]  L. Rohde,et al.  Bone marrow derived cells decrease inflammation but not oxidative stress in an experimental model of acute myocardial infarction. , 2010, Life sciences.

[21]  V. Demarco,et al.  Contribution of oxidative stress to pulmonary arterial hypertension. , 2010, World journal of cardiology.

[22]  A. P. Rocha,et al.  Analysis of heart rate variability in a rat model of induced pulmonary hypertension. , 2010, Medical Engineering and Physics.

[23]  N. Khaper,et al.  Targeting the vicious inflammation-oxidative stress cycle for the management of heart failure. , 2010, Antioxidants & redox signaling.

[24]  H. Tan,et al.  Early inflammatory response during the development of right ventricular heart failure in a rat model , 2010, European journal of heart failure.

[25]  F. Stillitano,et al.  Enhanced ROS production by NADPH oxidase is correlated to changes in antioxidant enzyme activity in human heart failure. , 2010, Biochimica et biophysica acta.

[26]  Horst Olschewski,et al.  Updated clinical classification of pulmonary hypertension. , 2009, Journal of the American College of Cardiology.

[27]  M. Dörr,et al.  Impaired cardiac autonomic control relates to disease severity in pulmonary hypertension , 2009, European Respiratory Journal.

[28]  Kohtaro Abe,et al.  The right ventricle under pressure: cellular and molecular mechanisms of right-heart failure in pulmonary hypertension. , 2009, Chest.

[29]  J. Nyengaard,et al.  The Three‐Dimensional Arrangement of the Myocytes Aggregated Together Within the Mammalian Ventricular Myocardium , 2009, Anatomical record.

[30]  P. Steendijk,et al.  Characterization of right ventricular function after monocrotaline-induced pulmonary hypertension in the intact rat. , 2006, American journal of physiology. Heart and circulatory physiology.

[31]  S. Cravo,et al.  Performance of two-dimensional Doppler echocardiography for the assessment of infarct size and left ventricular function in rats. , 2006, Brazilian journal of medical and biological research = Revista brasileira de pesquisas medicas e biologicas.

[32]  R. Naeije,et al.  Increased Sympathetic Nerve Activity in Pulmonary Artery Hypertension , 2004, Circulation.

[33]  P. Singal,et al.  Antioxidant and oxidative stress changes in experimental cor pulmonale , 2004, Molecular and Cellular Biochemistry.

[34]  L. Fauchier,et al.  Heart rate variability in severe right or left heart failure: the role of pulmonary hypertension and resistances , 2003, European journal of heart failure.

[35]  J. Cohn The Sympathetic Nervous System in Heart Failure , 2002, Circulation.

[36]  K. Leineweber,et al.  The cardiac beta-adrenoceptor-G-protein(s)-adenylyl cyclase system in monocrotaline-treated rats. , 2000, Journal of molecular and cellular cardiology.

[37]  V. Palace,et al.  Antioxidant potentials of vitamin A and carotenoids and their relevance to heart disease. , 1999, Free radical biology & medicine.

[38]  A. Porta,et al.  Power spectrum analysis of heart rate variability to assess the changes in sympathovagal balance during graded orthostatic tilt. , 1994, Circulation.

[39]  S. Morioka,et al.  Biventricular down-regulation of beta-adrenergic receptors in right ventricular hypertrophy induced by monocrotaline. , 1991, Japanese circulation journal.

[40]  A. Malliani,et al.  Cardiovascular Neural Regulation Explored in the Frequency Domain , 1991, Circulation.

[41]  D. W. Thomas Handbook of Methods for Oxygen Radical Research , 1988, Journal of Pediatric Gastroenterology and Nutrition.

[42]  E. Pick,et al.  A simple colorimetric method for the measurement of hydrogen peroxide produced by cells in culture. , 1980, Journal of immunological methods.

[43]  G. Ellman,et al.  Tissue sulfhydryl groups. , 1959, Archives of biochemistry and biophysics.

[44]  Oliver H. Lowry,et al.  Protein measurement with the Folin phenol reagent. , 1951, The Journal of biological chemistry.

[45]  S. Solomon,et al.  GUIDELINES AND STANDARDS , 2010 .

[46]  D. Metzger,et al.  Skeletal muscle mitochondrial dysfunction precedes right ventricular impairment in experimental pulmonary hypertension , 2012, Molecular and Cellular Biochemistry.

[47]  K. Asai,et al.  Effects of a pure alpha/beta-adrenergic receptor blocker on monocrotaline-induced pulmonary arterial hypertension with right ventricular hypertrophy in rats. , 2009, Circulation journal : official journal of the Japanese Circulation Society.

[48]  W P Santamore,et al.  Ventricular interdependence: significant left ventricular contributions to right ventricular systolic function. , 1998, Progress in cardiovascular diseases.

[49]  G Parati,et al.  Blood pressure variability and organ damage. , 1994, Journal of cardiovascular pharmacology.

[50]  D. Sánchez-Quintana,et al.  Myocardial fiber architecture in the human heart. Anatomical demonstration of modifications in the normal pattern of ventricular fiber architecture in a malformed adult specimen. , 1990, Acta anatomica.

[51]  H. Aebi,et al.  Catalase in vitro. , 1984, Methods in enzymology.

[52]  L. Flohé,et al.  Assays of glutathione peroxidase. , 1984, Methods in enzymology.