Thermal performance enhancement of shell and tube Latent Heat Storage Unit using longitudinal fins

Abstract Latent Heat Storage Unit (LHSU) employing Phase Change Materials (PCMs) is an effective means of thermal energy storage for solar applications. The practical use of such energy storage unit is however limited by the low thermal conductivity of the available PCMs. Significant augmentation in the heat transfer rate of PCMs is possible by installation of longitudinal fins. The augmentation in heat transfer for a shell and tube type LHSU is estimated by carrying out experimental analysis with three longitudinal fins installed on the heat transfer fluid (HTF) tube. The heat transfer augmentation is established in terms of melting and solidification time for varying fluid inlet temperatures and flow rates of heat transfer fluid (HTF). Experimental results show that the heat transfer augmentation is more sensitive to increase in HTF inlet temperature as compared to increase in mass flow rate of HTF. Solidification time has been observed to reduce up to 43.6% by installation of three fins.

[1]  Khamid Mahkamov,et al.  Solar energy storage using phase change materials , 2007 .

[2]  Amar M. Khudhair,et al.  A review on phase change energy storage: materials and applications , 2004 .

[3]  S. H. Choi,et al.  Thermal characteristics of paraffin in a spherical capsule during freezing and melting processes , 2000 .

[4]  K. Reddy Thermal Modeling of PCM-Based Solar Integrated Collector Storage Water Heating System , 2007 .

[5]  C. Balaji,et al.  Method to improve geometry for heat transfer enhancement in PCM composite heat sinks , 2005 .

[6]  A. Bejan Entropy Generation Minimization , 2016 .

[7]  Aytunç Erek,et al.  Experimental and numerical investigation of thermal energy storage with a finned tube , 2005 .

[8]  S. D. Kim,et al.  Heat transfer in a latent heat-storage system , 1989 .

[9]  R. Velraj,et al.  Thermal analysis of a finned-tube LHTS module for a solar dynamic power system , 2002 .

[10]  A. Sari,et al.  Thermal performance of palmitic acid as a phase change energy storage material , 2002 .

[11]  Afif Hasan,et al.  Thermal energy storage system with stearic acid as phase change material , 1994 .

[12]  R. Lehtiniemi,et al.  Numerical and experimental investigation of melting and freezing processes in phase change material storage , 2004 .

[13]  Bernard Franković,et al.  Analysis of the influence of operating conditions and geometric parameters on heat transfer in water-paraffin shell-and-tube latent thermal energy storage unit , 2006 .

[14]  A. Sari,et al.  Thermal energy storage system using stearic acid as a phase change material , 2001 .

[15]  A. Sharma,et al.  Review on thermal energy storage with phase change materials and applications , 2009 .

[16]  M. Gharebaghi,et al.  Enhancement of Heat Transfer in Latent Heat Storage Modules with Internal Fins , 2007 .

[17]  S. J. Kline,et al.  Describing Uncertainties in Single-Sample Experiments , 1953 .

[18]  Manish K. Rathod,et al.  Experimental Investigations on Latent Heat Storage Unit using Paraffin Wax as Phase Change Material , 2014 .

[19]  Ibrahim Dincer,et al.  Heat transfer analysis of phase change process in a finned-tube thermal energy storage system using artificial neural network , 2007 .

[20]  Mervyn Smyth,et al.  A comparison of heat transfer enhancement in a medium temperature thermal energy storage heat exchanger using fins , 2009 .

[21]  R. Velraj,et al.  Heat transfer enhancement in a latent heat storage system , 1999 .

[22]  J. Banerjee,et al.  Numerical Investigation on Latent Heat Storage Unit of Different Configurations , 2011 .

[23]  Kai Sirén,et al.  Analytical model for melting in a semi-infinite PCM storage with an internal fin , 2003 .

[24]  Marcel Lacroix,et al.  Analysis of natural convection melting from a heated wall with vertically oriented fins , 1998 .

[25]  Luisa F. Cabeza,et al.  Review on thermal energy storage with phase change: materials, heat transfer analysis and applications , 2003 .

[26]  M. Lacroix,et al.  NUMERICAL SIMULATION OF NATURAL CONVECTION-DOMINATED MELTING AND SOLIDIFICATION FROM A FINNED VERTICAL WALL , 1997 .

[27]  A. Bejan,et al.  Thermal Energy Storage: Systems and Applications , 2002 .

[28]  A. Sari,et al.  Thermal Performance of a Eutectic Mixture of Lauric and Stearic Acids as PCM Encapsulated in the Annulus of Two Concentric Pipes , 2002 .

[29]  M. Lacroix Study of the heat transfer behavior of a latent heat thermal energy storage unit with a finned tube , 1993 .

[30]  J. Banerjee,et al.  Thermal Performance of a Phase Change Material‐Based Latent Heat Thermal Storage Unit , 2014 .

[31]  Kamil Kaygusuz,et al.  Thermal Energy Storage System Using a Technical Grade Paraffin Wax as Latent Heat Energy Storage Material , 2005 .

[32]  S. D. Pohekar,et al.  Performance enhancement in latent heat thermal storage system: A review , 2009 .

[33]  A. Hasan Phase change material energy storage system employing palmitic acid , 1994 .

[34]  L. Cabeza,et al.  Experimental evaluation of commercial heat exchangers for use as PCM thermal storage systems , 2009 .

[35]  S. D. Kim,et al.  Heat-transfer characteristics of a latent heat storage system using MgCl2 · 6H2O , 1992 .

[36]  K. Sopian,et al.  Internal and external fin heat transfer enhancement technique for latent heat thermal energy storage in triplex tube heat exchangers , 2013 .

[37]  Yuwen Zhang,et al.  Heat Transfer Enhancement in Latent Heat Thermal Energy Storage System by Using an External Radial Finned Tube , 1996 .

[38]  M. K. Rathod,et al.  Thermal stability of phase change materials used in latent heat energy storage systems: A review , 2013 .

[39]  U. Stritih An experimental study of enhanced heat transfer in rectangular PCM thermal storage , 2004 .

[40]  L. Cabeza,et al.  Natural convection heat transfer coefficients in phase change material (PCM) modules with external vertical fins , 2008 .

[41]  Zhongliang Liu,et al.  Experimental investigations on the characteristics of melting processes of stearic acid in an annulus and its thermal conductivity enhancement by fins , 2005 .