Reproducibility in the fabrication and physics of moiré materials

[1]  C. N. Lau,et al.  Evidence for Flat Band Dirac Superconductor Originating from Quantum Geometry , 2021, 2112.13401.

[2]  R. Weitz,et al.  Quantum anomalous Hall octet driven by orbital magnetism in bilayer graphene , 2021, Nature.

[3]  J. Shan,et al.  Quantum anomalous Hall effect from intertwined moiré bands , 2021, Nature.

[4]  Kenji Watanabe,et al.  Superconductivity in rhombohedral trilayer graphene , 2021, Nature.

[5]  F. Guinea,et al.  High transmission in twisted bilayer graphene with angle disorder , 2021, Physical Review B.

[6]  X. Dai,et al.  Orbital magnetic states in moiré graphene systems , 2021 .

[7]  Kenji Watanabe,et al.  Half- and quarter-metals in rhombohedral trilayer graphene , 2021, Nature.

[8]  D. Muller,et al.  Emergence of a noncollinear magnetic state in twisted bilayer CrI3 , 2021, 2103.09850.

[9]  A. Millis,et al.  Quantum criticality in twisted transition metal dichalcogenides , 2021, Nature.

[10]  J. Shan,et al.  Continuous Mott transition in semiconductor moiré superlattices , 2021, Nature.

[11]  J. Shan,et al.  Charge-order-enhanced capacitance in semiconductor moiré superlattices , 2021, Nature Nanotechnology.

[12]  A. Neto,et al.  Tunable van Hove singularities and correlated states in twisted monolayer–bilayer graphene , 2021, Nature Physics.

[13]  T. Taniguchi,et al.  Chern insulators, van Hove singularities and topological flat bands in magic-angle twisted bilayer graphene , 2021, Nature Materials.

[14]  P. Kim,et al.  Electric field–tunable superconductivity in alternating-twist magic-angle trilayer graphene , 2021, Science.

[15]  Kenji Watanabe,et al.  Tunable strongly coupled superconductivity in magic-angle twisted trilayer graphene , 2021, Nature.

[16]  A. Yacoby,et al.  Unconventional sequence of correlated Chern insulators in magic-angle twisted bilayer graphene , 2021, Nature Physics.

[17]  P. Alekseev,et al.  Study of local anodic oxidation regimes in MoSe2 , 2021, Nanotechnology.

[18]  Kenji Watanabe,et al.  Competing Zero-Field Chern Insulators in Superconducting Twisted Bilayer Graphene. , 2020, Physical review letters.

[19]  Kenji Watanabe,et al.  Highly tunable junctions and non-local Josephson effect in magic-angle graphene tunnelling devices , 2020, Nature Nanotechnology.

[20]  J. Shan,et al.  Correlated insulating states at fractional fillings of moiré superlattices , 2020, Nature.

[21]  T. Ihn,et al.  Gate-defined Josephson junctions in magic-angle twisted bilayer graphene , 2020, Nature Nanotechnology.

[22]  Kenji Watanabe,et al.  Strain fields in twisted bilayer graphene , 2020, Nature Materials.

[23]  E. Andrei,et al.  Graphene bilayers with a twist , 2020, Nature Materials.

[24]  M. Angeli,et al.  Γ valley transition metal dichalcogenide moiré bands , 2020, Proceedings of the National Academy of Sciences.

[25]  K. Novoselov,et al.  Electronic phase separation in multilayer rhombohedral graphite , 2020, Nature.

[26]  J. Shan,et al.  Stripe phases in WSe2/WS2 moiré superlattices , 2020, Nature Materials.

[27]  Kenji Watanabe,et al.  Correlated insulating states at fractional fillings of the WS2/WSe2 moiré lattice , 2020, Nature Physics.

[28]  F. Xia,et al.  Moiré Band Topology in Twisted Bilayer Graphene. , 2020, Nano letters.

[29]  Mit H. Naik,et al.  Imaging moiré flat bands in three-dimensional reconstructed WSe2/WS2 superlattices , 2020, Nature Materials.

[30]  Kenji Watanabe,et al.  Hofstadter subband ferromagnetism and symmetry-broken Chern insulators in twisted bilayer graphene , 2020, Nature Physics.

[31]  Kenji Watanabe,et al.  Strongly correlated Chern insulators in magic-angle twisted bilayer graphene , 2020, Nature.

[32]  Kenji Watanabe,et al.  Untying the insulating and superconducting orders in magic-angle graphene , 2020, Nature.

[33]  P. Kim,et al.  Tunable spin-polarized correlated states in twisted double bilayer graphene , 2020, Nature.

[34]  L. Balents,et al.  Superconductivity and strong correlations in moiré flat bands , 2020 .

[35]  Kenji Watanabe,et al.  Correlated electronic phases in twisted bilayer transition metal dichalcogenides , 2020, Nature Materials.

[36]  Kenji Watanabe,et al.  Visualization of moiré superlattices , 2020, Nature Nanotechnology.

[37]  M. Huber,et al.  Imaging orbital ferromagnetism in a moiré Chern insulator , 2020, Science.

[38]  Kenji Watanabe,et al.  Tunable correlated states and spin-polarized phases in twisted bilayer–bilayer graphene , 2020, Nature.

[39]  L. Balents,et al.  Noncollinear phases in moiré magnets , 2020, Proceedings of the National Academy of Sciences.

[40]  J. Zhu,et al.  Electrical switching of magnetic order in an orbital Chern insulator , 2020, Nature.

[41]  Xiaodong Xu,et al.  Electrically tunable correlated and topological states in twisted monolayer–bilayer graphene , 2020, Nature Physics.

[42]  Kenji Watanabe,et al.  Nematicity and competing orders in superconducting magic-angle graphene , 2020, Science.

[43]  S. Trebst,et al.  Realization of nearly dispersionless bands with strong orbital anisotropy from destructive interference in twisted bilayer MoS2 , 2020, Nature Communications.

[44]  J. Shan,et al.  Simulation of Hubbard model physics in WSe2/WS2 moiré superlattices , 2020, Nature.

[45]  Xiaodong Xu,et al.  Symmetry breaking in twisted double bilayer graphene , 2020, 2002.08904.

[46]  Y. Oreg,et al.  Cascade of phase transitions and Dirac revivals in magic-angle graphene , 2019, Nature.

[47]  Kenji Watanabe,et al.  Cascade of electronic transitions in magic-angle twisted bilayer graphene , 2019, Nature.

[48]  Kenji Watanabe,et al.  Independent superconductors and correlated insulators in twisted bilayer graphene , 2019, Nature Physics.

[49]  C. N. Lau,et al.  Gate Tunable Magnetism and Giant Magnetoresistance in ABC-stacked Few-Layer Graphene , 2019, 1911.04450.

[50]  T. Taniguchi,et al.  Strongly correlated electrons and hybrid excitons in a moiré heterostructure , 2019, Nature.

[51]  Kenji Watanabe,et al.  Mott and generalized Wigner crystal states in WSe2/WS2 moiré superlattices , 2019, Nature.

[52]  T. Taniguchi,et al.  Mapping the twist-angle disorder and Landau levels in magic-angle graphene , 2019, Nature.

[53]  Kenji Watanabe,et al.  Correlated Insulating States in Twisted Double Bilayer Graphene. , 2019, Physical review letters.

[54]  Yulin Chen,et al.  Interaction effects and superconductivity signatures in twisted double-bilayer WSe$_2$ , 2019, 1907.03966.

[55]  J. Zhu,et al.  Intrinsic quantized anomalous Hall effect in a moiré heterostructure , 2019, Science.

[56]  Kenji Watanabe,et al.  Spectroscopic signatures of many-body correlations in magic-angle twisted bilayer graphene , 2019, Nature.

[57]  E. Rossi,et al.  Geometric and Conventional Contribution to the Superfluid Weight in Twisted Bilayer Graphene. , 2019, Physical review letters.

[58]  T. Heikkila,et al.  Superfluid weight and Berezinskii-Kosterlitz-Thouless transition temperature of twisted bilayer graphene , 2019, Physical Review B.

[59]  Fang Xie,et al.  Topology-Bounded Superfluid Weight in Twisted Bilayer Graphene. , 2019, Physical review letters.

[60]  F. Guinea,et al.  Giant oscillations in a triangular network of one-dimensional states in marginally twisted graphene , 2019, Nature Communications.

[61]  T. Taniguchi,et al.  Tunable correlated Chern insulator and ferromagnetism in a moiré superlattice , 2019, Nature.

[62]  M. Katsnelson,et al.  Large-area, periodic, and tunable intrinsic pseudo-magnetic fields in low-angle twisted bilayer graphene , 2019, Nature Communications.

[63]  A. Vishwanath,et al.  Flat band in twisted bilayer Bravais lattices , 2019, Physical Review Research.

[64]  T. Taniguchi,et al.  Charge order and broken rotational symmetry in magic-angle twisted bilayer graphene , 2019, Nature.

[65]  X. Dai,et al.  Quantum Valley Hall Effect, Orbital Magnetism, and Anomalous Hall Effect in Twisted Multilayer Graphene Systems , 2019, Physical Review X.

[66]  Kenji Watanabe,et al.  Correlated states in twisted double bilayer graphene , 2019, Nature Physics.

[67]  Kenji Watanabe,et al.  Superconductors, orbital magnets and correlated states in magic-angle bilayer graphene , 2019, Nature.

[68]  C. N. Lau,et al.  Correlated insulating and superconducting states in twisted bilayer graphene below the magic angle , 2019, Science Advances.

[69]  A. Vishwanath,et al.  Magic angle hierarchy in twisted graphene multilayers , 2019, Physical Review B.

[70]  Kenji Watanabe,et al.  Signatures of tunable superconductivity in a trilayer graphene moiré superlattice , 2019, Nature.

[71]  M. Kastner,et al.  Emergent ferromagnetism near three-quarters filling in twisted bilayer graphene , 2019, Science.

[72]  G. Refael,et al.  Author Correction: Electronic correlations in twisted bilayer graphene near the magic angle , 2019, Nature Physics.

[73]  F. Withers,et al.  Strain-Engineering of Twist-Angle in Graphene/hBN Superlattice Devices. , 2018, Nano letters.

[74]  D. Graf,et al.  Tuning superconductivity in twisted bilayer graphene , 2018, Science.

[75]  Bohm-Jung Yang,et al.  Failure of Nielsen-Ninomiya Theorem and Fragile Topology in Two-Dimensional Systems with Space-Time Inversion Symmetry: Application to Twisted Bilayer Graphene at Magic Angle , 2018, Physical Review X.

[76]  A. Vishwanath,et al.  Origin of Magic Angles in Twisted Bilayer Graphene. , 2018, Physical review letters.

[77]  A. Vishwanath,et al.  Faithful tight-binding models and fragile topology of magic-angle bilayer graphene , 2018, Physical Review B.

[78]  Zhida Song,et al.  All Magic Angles in Twisted Bilayer Graphene are Topological. , 2018, Physical review letters.

[79]  E. Tutuc,et al.  Topological Insulators in Twisted Transition Metal Dichalcogenide Homobilayers. , 2018, Physical review letters.

[80]  Yuanbo Zhang,et al.  Gate-Tunable Topological Flat Bands in Trilayer Graphene Boron-Nitride Moiré Superlattices. , 2018, Physical review letters.

[81]  Lin He,et al.  Twisted graphene bilayer around the first magic angle engineered by heterostrain , 2018, Physical Review B.

[82]  S. Banerjee,et al.  Large effective mass and interaction-enhanced Zeeman splitting of K -valley electrons in MoSe 2 , 2018, 1804.10104.

[83]  Takashi Taniguchi,et al.  Autonomous robotic searching and assembly of two-dimensional crystals to build van der Waals superlattices , 2018, Nature Communications.

[84]  E. Kaxiras,et al.  Atomic and electronic reconstruction at the van der Waals interface in twisted bilayer graphene , 2018, Nature Materials.

[85]  E. Tutuc,et al.  Hubbard Model Physics in Transition Metal Dichalcogenide Moiré Bands. , 2018, Physical review letters.

[86]  J. Lado,et al.  Electrically Tunable Gauge Fields in Tiny-Angle Twisted Bilayer Graphene. , 2018, Physical review letters.

[87]  G. T. de Laissardière,et al.  Electronic Spectrum of Twisted Graphene Layers under Heterostrain. , 2018, Physical review letters.

[88]  Feng Wang,et al.  Evidence of a gate-tunable Mott insulator in a trilayer graphene moiré superlattice , 2018, Nature Physics.

[89]  B. Jonker,et al.  Nano-"Squeegee" for the Creation of Clean 2D Material Interfaces. , 2018, ACS applied materials & interfaces.

[90]  Takashi Taniguchi,et al.  Unconventional superconductivity in magic-angle graphene superlattices , 2018, Nature.

[91]  E. Kaxiras,et al.  Correlated insulator behaviour at half-filling in magic-angle graphene superlattices , 2018, Nature.

[92]  Lin He,et al.  Splitting of Van Hove singularities in slightly twisted bilayer graphene , 2017 .

[93]  Kenji Watanabe,et al.  Ambipolar Landau levels and strong band-selective carrier interactions in monolayer WSe2 , 2017, Nature Materials.

[94]  S. Larentis,et al.  Tunable moiré bands and strong correlations in small-twist-angle bilayer graphene , 2017, Proceedings of the National Academy of Sciences.

[95]  M. Chou,et al.  Interlayer couplings, Moiré patterns, and 2D electronic superlattices in MoS2/WSe2 hetero-bilayers , 2017, Science Advances.

[96]  K. Novoselov,et al.  Stacking transition in bilayer graphene caused by thermally activated rotation , 2016, 1612.02248.

[97]  A. Harju,et al.  Band geometry, Berry curvature and superfluid weight , 2016, 1610.01803.

[98]  E. Kaxiras,et al.  Superlattice-Induced Insulating States and Valley-Protected Orbits in Twisted Bilayer Graphene. , 2016, Physical review letters.

[99]  Bjarke S. Jessen,et al.  The hot pick-up technique for batch assembly of van der Waals heterostructures , 2016, Nature communications.

[100]  Zhi-bo Liu,et al.  High‐Precision Twist‐Controlled Bilayer and Trilayer Graphene , 2016, Advanced materials.

[101]  Congli He,et al.  Thermally Induced Graphene Rotation on Hexagonal Boron Nitride. , 2016, Physical review letters.

[102]  K. Novoselov,et al.  Macroscopic self-reorientation of interacting two-dimensional crystals , 2016, Nature Communications.

[103]  S. Banerjee,et al.  van der Waals Heterostructures with High Accuracy Rotational Alignment. , 2016, Nano letters.

[104]  S. Banerjee,et al.  Shubnikov-de Haas Oscillations of High-Mobility Holes in Monolayer and Bilayer WSe_{2}: Landau Level Degeneracy, Effective Mass, and Negative Compressibility. , 2016, Physical review letters.

[105]  B. Lee,et al.  Graphene transfer in vacuum yielding a high quality graphene , 2015 .

[106]  C. N. Lau,et al.  Topological Winding Number Change and Broken Inversion Symmetry in a Hofstadter's Butterfly. , 2015, Nano letters.

[107]  Päivi Törmä,et al.  Superfluidity in topologically nontrivial flat bands , 2015, Nature Communications.

[108]  Lei Wang,et al.  Multi-terminal transport measurements of MoS2 using a van der Waals heterostructure device platform. , 2015, Nature nanotechnology.

[109]  Jun Lou,et al.  Vertical and in-plane heterostructures from WS2/MoS2 monolayers. , 2014, Nature materials.

[110]  T. Ohta,et al.  Rotational disorder in twisted bilayer graphene. , 2014, ACS nano.

[111]  K. Novoselov,et al.  Commensurate–incommensurate transition in graphene on hexagonal boron nitride , 2014, Nature Physics.

[112]  Zhiping Xu,et al.  Observation of high-speed microscale superlubricity in graphite. , 2013, Physical review letters.

[113]  Pinshane Y. Huang,et al.  Strain solitons and topological defects in bilayer graphene , 2013, Proceedings of the National Academy of Sciences.

[114]  T. Taniguchi,et al.  Massive Dirac Fermions and Hofstadter Butterfly in a van der Waals Heterostructure , 2013, Science.

[115]  Miquel Salmeron,et al.  Superlubric sliding of graphene nanoflakes on graphene. , 2013, ACS nano.

[116]  F. Guinea,et al.  Cloning of Dirac fermions in graphene superlattices , 2012, Nature.

[117]  K. Shepard,et al.  Hofstadter’s butterfly and the fractal quantum Hall effect in moiré superlattices , 2012, Nature.

[118]  Quanshui Zheng,et al.  Observation of microscale superlubricity in graphite. , 2012, Physical review letters.

[119]  Pinshane Y. Huang,et al.  Twinning and twisting of tri- and bilayer graphene. , 2012, Nano letters.

[120]  Pablo Jarillo-Herrero,et al.  Emergence of superlattice Dirac points in graphene on hexagonal boron nitride , 2012, Nature Physics.

[121]  F. Guinea,et al.  Non-Abelian gauge potentials in graphene bilayers. , 2011, Physical review letters.

[122]  Ting Yu,et al.  Raman characterization of ABA- and ABC-stacked trilayer graphene. , 2011, ACS nano.

[123]  C. N. Lau,et al.  Transport spectroscopy of symmetry-broken insulating states in bilayer graphene. , 2011, Nature nanotechnology.

[124]  C. N. Lau,et al.  Stacking-dependent band gap and quantum transport in trilayer graphene , 2011, 1103.6088.

[125]  P. Klimov,et al.  Imaging stacking order in few-layer graphene. , 2010, Nano letters.

[126]  A. MacDonald,et al.  Spontaneous quantum Hall states in chirally stacked few-layer graphene systems. , 2010, Physical review letters.

[127]  R. Bistritzer,et al.  Moiré bands in twisted double-layer graphene , 2010, Proceedings of the National Academy of Sciences.

[128]  Michael J. Lawler,et al.  Nematic Fermi Fluids in Condensed Matter Physics , 2009, 0910.4166.

[129]  Sheng Wang,et al.  Self-retracting motion of graphite microflakes. , 2007, Physical review letters.

[130]  J. Frenken,et al.  Superlubricity of graphite. , 2004, Physical review letters.

[131]  D. Hofstadter Energy levels and wave functions of Bloch electrons in rational and irrational magnetic fields , 1976 .

[132]  T. Taniguchi,et al.  Magic Angle Spectroscopy , 2018 .