The Existence and Efficient Construction of Large Independent Sets in General Random Intersection Graphs
暂无分享,去创建一个
Paul G. Spirakis | Sotiris E. Nikoletseas | Christoforos L. Raptopoulos | P. Spirakis | S. Nikoletseas
[1] Béla Bollobás,et al. Random Graphs , 1985 .
[2] José D. P. Rolim,et al. Randomization and Approximation Techniques in Computer Science , 2002, Lecture Notes in Computer Science.
[3] Béla Bollobás,et al. Random Graphs: Notation , 2001 .
[4] Maria J. Serna,et al. Random Geometric Problems on [0, 1]² , 1998, RANDOM.
[5] Paul G. Spirakis,et al. Short Vertex Disjoint Paths and Multiconnectivity in Random Graphs: Reliable Network Computing , 1994, ICALP.
[6] Noga Alon,et al. The Probabilistic Method, Second Edition , 2004 .
[7] J. Dall,et al. Random geometric graphs. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.
[8] Jim Freeman,et al. Stochastic Processes (Second Edition) , 1996 .
[9] Giorgio Gambosi,et al. Complexity and Approximation , 1999, Springer Berlin Heidelberg.
[10] Josep Díaz Cort,et al. Random geometric problems on $[0,1]^2$ , 1998 .
[11] James Allen Fill,et al. Random intersection graphs when m= w (n): an equivalence theorem relating the evolution of the G ( n, m, p ) and G ( n,P /italic>) models , 2000 .
[12] Maria J. Serna,et al. Evaluation of Basic Protocols for Optical Smart Dust Networks , 2003, WEA.
[13] Klaus Jansen,et al. Experimental and Efficient Algorithms , 2003, Lecture Notes in Computer Science.
[14] Edward Szpilrajn-Marczewski. Sur deux propriétés des classes d'ensembles , 1945 .
[15] Noga Alon,et al. The Probabilistic Method , 2015, Fundamentals of Ramsey Theory.
[16] James Allen Fill,et al. Random intersection graphs when m=omega(n): An equivalence theorem relating the evolution of the G(n, m, p) and G(n, p) models , 2000, Random Struct. Algorithms.
[17] Maria J. Serna,et al. A Random Graph Model for Optical Networks of Sensors , 2003, IEEE Trans. Mob. Comput..
[18] Erhard Godehardt,et al. Two Models of Random Intersection Graphs for Classification , 2003 .
[19] Paul G. Spirakis,et al. Expander Properties in Random Regular Graphs with Edge Faults , 1995, STACS.
[20] Edward R. Scheinerman,et al. On Random Intersection Graphs: The Subgraph Problem , 1999, Combinatorics, Probability and Computing.
[21] Sheldon M. Ross,et al. Stochastic Processes , 2018, Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics.
[22] Jordi Petit,et al. A Guide to Concentration Bounds , 2001 .
[23] Maria J. Serna,et al. Approximating Layout Problems on Random Geometric Graphs , 2001, J. Algorithms.