Critical Transitions In a Model of a Genetic Regulatory System

We consider a model for substrate-depletion oscillations in genetic systems, based on a stochastic differential equation with a slowly evolving external signal. We show the existence of critical transitions in the system. We apply two methods to numerically test the synthetic time series generated by the system for early indicators of critical transitions: a detrended fluctuation analysis method, and a novel method based on topological data analysis (persistence diagrams).

[1]  C. Kuehn A mathematical framework for critical transitions: Bifurcations, fast–slow systems and stochastic dynamics , 2011, 1101.2899.

[2]  Christian Kuehn,et al.  A Mathematical Framework for Critical Transitions: Normal Forms, Variance and Applications , 2011, J. Nonlinear Sci..

[3]  M. Gameiro,et al.  Topological Measurement of Protein Compressibility via Persistence Diagrams , 2012 .

[4]  S. Carpenter,et al.  Anticipating Critical Transitions , 2012, Science.

[5]  M. Elowitz,et al.  A synthetic oscillatory network of transcriptional regulators , 2000, Nature.

[6]  J. Collins,et al.  Construction of a genetic toggle switch in Escherichia coli , 2000, Nature.

[7]  G. Carlsson,et al.  Topology based data analysis identifies a subgroup of breast cancers with a unique mutational profile and excellent survival , 2011, Proceedings of the National Academy of Sciences.

[8]  André C. M. Ran,et al.  Proceedings of the European Congress of Mathematics , 2010 .

[9]  J. Tyson,et al.  Numerical analysis of a comprehensive model of M-phase control in Xenopus oocyte extracts and intact embryos. , 1993, Journal of cell science.

[10]  Steve Oudot,et al.  Persistence stability for geometric complexes , 2012, ArXiv.

[11]  J. Liao,et al.  Design of artificial cell-cell communication using gene and metabolic networks. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[12]  R. Bryce,et al.  Revisiting detrended fluctuation analysis , 2012, Scientific Reports.

[13]  Wolfgang Banzhaf,et al.  Evolving Noisy Oscillatory Dynamics in Genetic Regulatory Networks , 2006, EuroGP.

[14]  David Cohen-Steiner,et al.  Lipschitz Functions Have Lp-Stable Persistence , 2010, Found. Comput. Math..

[15]  M. Gameiro,et al.  A topological measurement of protein compressibility , 2014, Japan Journal of Industrial and Applied Mathematics.

[16]  Timothy M. Lenton,et al.  A modified method for detecting incipient bifurcations in a dynamical system , 2007 .

[17]  P. Ditlevsen,et al.  Tipping points: Early warning and wishful thinking , 2010 .

[18]  H. Edelsbrunner,et al.  Persistent Homology — a Survey , 2022 .

[19]  Leonidas J. Guibas,et al.  Gromov‐Hausdorff Stable Signatures for Shapes using Persistence , 2009, Comput. Graph. Forum.

[20]  Peter Szmolyan,et al.  Extending Geometric Singular Perturbation Theory to Nonhyperbolic Points - Fold and Canard Points in Two Dimensions , 2001, SIAM J. Math. Anal..

[21]  Leonidas J. Guibas,et al.  Persistence-based clustering in riemannian manifolds , 2011, SoCG '11.

[22]  Jan Sieber,et al.  Climate tipping as a noisy bifurcation: a predictive technique , 2010, 1007.1376.

[23]  Andrey A. Ptitsyn,et al.  Digital Signal Processing Reveals Circadian Baseline Oscillation in Majority of Mammalian Genes , 2007, PLoS Comput. Biol..

[24]  S. Carpenter,et al.  Early-warning signals for critical transitions , 2009, Nature.

[25]  Neil Fenichel Geometric singular perturbation theory for ordinary differential equations , 1979 .

[26]  J. Hasty,et al.  Noise-based switches and amplifiers for gene expression. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[27]  Katherine C. Chen,et al.  Sniffers, buzzers, toggles and blinkers: dynamics of regulatory and signaling pathways in the cell. , 2003, Current opinion in cell biology.

[28]  Konstantin Mischaikow,et al.  Topology of force networks in compressed granular media , 2012 .