Microstructural changes of hydrated cement blended with fly ash upon carbonation

[1]  M. Zając,et al.  Phase assemblage and microstructure of cement paste subjected to enforced, wet carbonation , 2020 .

[2]  M. Zając,et al.  Effect of sulfate additions on hydration and performance of ternary slag-limestone composite cements , 2018 .

[3]  M. Zając,et al.  Portland metakaolin cement containing dolomite or limestone – Similarities and differences in phase assemblage and compressive strength , 2017 .

[4]  B. Münch,et al.  Steady-state O2 and CO2 diffusion in carbonated mortars produced with blended cements , 2017 .

[5]  Christopher B. Stabler,et al.  Influence of limestone on the hydration of ternary slag cements , 2017 .

[6]  Josef Kaufmann,et al.  Experimental studies and thermodynamic modeling of the carbonation of Portland cement, metakaolin and limestone mortars , 2016 .

[7]  J. Skibsted,et al.  Thermodynamic modeling of hydrated white Portland cement–metakaolin–limestone blends utilizing hydration kinetics from 29Si MAS NMR spectroscopy , 2016 .

[8]  H. Justnes How SCMs Improve Concrete Durability – A Fundamental View , 2016 .

[9]  Guang Ye,et al.  Development of porosity of cement paste blended with supplementary cementitious materials after carbonation , 2017 .

[10]  S. Poyet,et al.  Impact of carbonation on unsaturated water transport properties of cement-based materials , 2015 .

[11]  A. Allen,et al.  Structural changes in C–S–H gel during dissolution: Small-angle neutron scattering and Si-NMR characterization , 2015 .

[12]  J. Skibsted,et al.  Carbonation of C–S–H and C–A–S–H samples studied by 13C, 27Al and 29Si MAS NMR spectroscopy , 2015 .

[13]  J.H.M. Visser,et al.  Influence of the carbon dioxide concentration on the resistance to carbonation of concrete , 2014 .

[14]  Michael D. A. Thomas,et al.  Supplementary Cementing Materials in Concrete , 2013 .

[15]  Nele De Belie,et al.  Carbonation of slag concrete: Effect of the cement replacement level and curing on the carbonation coefficient – Effect of carbonation on the pore structure , 2013 .

[16]  Karen Scrivener,et al.  Cement substitution by a combination of metakaolin and limestone , 2012 .

[17]  K. Weerdt,et al.  Fly ash–limestone ternary cements: effect of component fineness , 2011 .

[18]  Duncan Herfort,et al.  Thermodynamics and cement science , 2011 .

[19]  G. Saoût,et al.  Hydration mechanisms of ternary Portland cements containing limestone powder and fly ash , 2011 .

[20]  Harald Justnes,et al.  Synergy between fly ash and limestone powder in ternary cements , 2011 .

[21]  K. Weerdt,et al.  Fly ash -limestone ternary composite cements: synergetic effect at 28 days , 2010 .

[22]  Magdalena Balonis,et al.  The density of cement phases , 2009 .

[23]  H. Taylor,et al.  Solubility and structure of calcium silicate hydrate , 2004 .

[24]  B. Johannesson,et al.  Microstructural changes caused by carbonation of cement mortar , 2001 .

[25]  Michael D.A. Thomas,et al.  Carbonation of Fly Ash Concrete , 1992, SP-192: 2000 Canmet/ACI Conference on Durability of Concrete.

[26]  Mitsunori Kawamura,et al.  Effect of sodium chloride and sodium hydroxide from the surrounding solution on alkali-silica reaction in mortars containing fly ash , 1988 .

[27]  D. W. Hobbs,et al.  Carbonation of concrete containing pfa , 1988 .

[28]  É. Lippmaa,et al.  Structural studies of silicates by solid-state high-resolution silicon-29 NMR , 1980 .

[29]  E. Barrett,et al.  (CONTRIBUTION FROM THE MULTIPLE FELLOWSHIP OF BAUGH AND SONS COMPANY, MELLOX INSTITUTE) The Determination of Pore Volume and Area Distributions in Porous Substances. I. Computations from Nitrogen Isotherms , 1951 .