Nanodiscs versus macrodiscs for NMR of membrane proteins.

It is challenging to find membrane mimics that stabilize the native structures, dynamics, and functions of membrane proteins. In a recent advance, nanodiscs have been shown to provide a bilayer environment compatible with solution NMR. We show that increasing the lipid to "belt" peptide ratio expands their diameter, slows their reorientation rate, and allows the protein-containing discs to be aligned in a magnetic field for oriented sample solid-state NMR. The spectroscopic properties of membrane proteins with one to seven transmembrane helices in q = 0.1 isotropic bicelles, ~10 nm diameter isotropic nanodiscs, ~30 nm diameter magnetically aligned macrodiscs, and q = 5 magnetically aligned bicelles are compared.

[1]  C. Schmidt,et al.  Studies of synthetic peptide analogs of the amphipathic helix. Structure of complexes with dimyristoyl phosphatidylcholine. , 1985, The Journal of biological chemistry.

[2]  S. Sligar,et al.  Chapter 11 - Reconstitution of membrane proteins in phospholipid bilayer nanodiscs. , 2009, Methods in enzymology.

[3]  S. Opella,et al.  Structural properties of fd coat protein in sodium dodecyl sulfate micelles. , 1980, Biochemical and biophysical research communications.

[4]  S. Opella,et al.  High-resolution NMR spectroscopy of a GPCR in aligned bicelles. , 2006, Journal of the American Chemical Society.

[5]  R. Griffin,et al.  NMR structural analysis of a membrane protein: bacteriorhodopsin peptide backbone orientation and motion. , 1985, Biochemistry.

[6]  S. Opella,et al.  Local and global dynamics of the G protein-coupled receptor CXCR1. , 2011, Biochemistry.

[7]  S. Sligar,et al.  Applications of phospholipid bilayer nanodiscs in the study of membranes and membrane proteins. , 2007, Biochemistry.

[8]  S. Opella,et al.  Triton X-100 as the "short-chain lipid" improves the magnetic alignment and stability of membrane proteins in phosphatidylcholine bilayers for oriented-sample solid-state NMR spectroscopy. , 2010, Journal of the American Chemical Society.

[9]  Ying Li,et al.  Structural analysis of nanoscale self-assembled discoidal lipid bilayers by solid-state NMR spectroscopy. , 2006, Biophysical journal.

[10]  C. Rienstra,et al.  Magic-angle spinning solid-state NMR spectroscopy of nanodisc-embedded human CYP3A4. , 2007, Biochemistry.

[11]  J. Bowie,et al.  Bicelle crystallization: a new method for crystallizing membrane proteins yields a monomeric bacteriorhodopsin structure. , 2002, Journal of molecular biology.

[12]  S. A. Hunt,et al.  MAGNETICALLY ALIGNED MEMBRANE MODEL SYSTEMS WITH POSITIVE ORDER PARAMETER : SWITCHING THE SIGN OF SZZ WITH PARAMAGNETIC IONS , 1996 .

[13]  G. Wagner,et al.  Structural and functional characterization of the integral membrane protein VDAC-1 in lipid bilayer nanodiscs. , 2009, Journal of the American Chemical Society.

[14]  S. Opella,et al.  Structure and dynamics of the membrane-bound form of Pf1 coat protein: implications of structural rearrangement for virus assembly. , 2010, Biophysical journal.

[15]  A. Bax,et al.  Direct measurement of distances and angles in biomolecules by NMR in a dilute liquid crystalline medium. , 1997, Science.

[16]  A. Arseniev,et al.  Lipid-protein nanodiscs as reference medium in detergent screening for high-resolution NMR studies of integral membrane proteins. , 2010, Journal of the American Chemical Society.

[17]  R. Prosser,et al.  Isotropic solutions of phospholipid bicelles: A new membrane mimetic for high-resolution NMR studies of polypeptides , 1997, Journal of biomolecular NMR.

[18]  A. Arseniev,et al.  Lipid-protein nanoscale bilayers: a versatile medium for NMR investigations of membrane proteins and membrane-active peptides. , 2008, Journal of the American Chemical Society.

[19]  D. Willbold,et al.  Integral membrane proteins in nanodiscs can be studied by solution NMR spectroscopy. , 2009, Journal of the American Chemical Society.

[20]  S. Opella,et al.  High-resolution NMR spectroscopy of membrane proteins in aligned bicelles. , 2004, Journal of the American Chemical Society.

[21]  S. Opella,et al.  fd coat protein structure in membrane environments. , 1993, Journal of molecular biology.

[22]  S. Opella,et al.  NMR studies of p7 protein from hepatitis C virus , 2009, European Biophysics Journal.

[23]  C. Tanford,et al.  Characterization of membrane proteins in detergent solutions. , 1976, Biochimica et biophysica acta.

[24]  S. Sligar,et al.  Directed self-assembly of monodisperse phospholipid bilayer Nanodiscs with controlled size. , 2004, Journal of the American Chemical Society.

[25]  J. Rosenbusch,et al.  Lipidic cubic phases: a novel concept for the crystallization of membrane proteins. , 1996, Proceedings of the National Academy of Sciences of the United States of America.