Coupling between land ecosystems and the atmospheric hydrologic cycle through biogenic aerosol pathways

AUTHOR AFFILIATIONS: BARTH, SUN, WIEDINMYER, KARL, KIM, LEVIS, MAHOWALD, MOORE, NANDI, NEMITZ, POTOSNAK, SMITH, AND STROUD—National Center for Atmospheric Research, Boulder, Colorado; MCFADDEN—University of Minnesota, Saint Paul, Minnesota; CHUANG—University of California, Santa Cruz, Santa Cruz, California; COLLINS—Texas A&M University, College Station, Texas; GRIFFIN—University of New Hampshire, Durham, New Hampshire; HANNIGAN—University of Colorado, Boulder, Colorado; LASHER-TRAPP—Purdue University, West Lafayette, Indiana; LITVAK—University of Texas, Austin, Texas; NENES—Georgia Institute of Technology, Atlanta, Georgia; RAYMOND—Bucknell University, Lewisburg, Pennsylvania; STILL—University of California, Santa Barbara, Santa Barbara, California CORRESPONDING AUTHOR: Dr. Mary Barth, NCAR/MMM, P.O. Box 3000, Boulder, CO 80307 E-mail: barthm@ucar.edu

[1]  B. Albrecht Aerosols, Cloud Microphysics, and Fractional Cloudiness , 1989, Science.

[2]  G. Grisetti,et al.  Further Reading , 1984, IEEE Spectrum.

[3]  Donald Dabdub,et al.  Estimate of global atmospheric organic aerosol from oxidation of biogenic hydrocarbons , 1999 .

[4]  S. Pandis,et al.  Cloud activation of single‐component organic aerosol particles , 2002 .

[5]  J. Seinfeld,et al.  Marine aerosol formation from biogenic iodine emissions , 2002, Nature.

[6]  H. Hansson,et al.  Biogenic emissions and gaseous precursors to forest aerosols , 2001 .

[7]  J. Penner,et al.  Large contribution of organic aerosols to cloud-condensation-nuclei concentrations , 1993, Nature.

[8]  C. N. Hewitt,et al.  A global model of natural volatile organic compound emissions , 1995 .

[9]  S. Twomey The Influence of Pollution on the Shortwave Albedo of Clouds , 1977 .

[10]  Shao-Meng Li,et al.  A case study of gas-to-particle conversion in an eastern Canadian forest , 1999 .

[11]  M. Facchini,et al.  The influence of the organic aerosol component on CCN supersaturation spectra for different aerosol types , 2002 .

[12]  R. Kurdi,et al.  In-situ Formation of Light-Absorbing Organic Matter in Cloud Water , 2003 .

[13]  Diagnostics of land surface spatial variability and water vapor flux , 1995 .

[14]  R. Pincus,et al.  Effect of precipitation on the albedo susceptibility of clouds in the marine boundary layer , 1994, Nature.

[15]  Jingchuan Zhou,et al.  Cloud condensation nuclei in the Amazon Basin: “marine” conditions over a continent? , 2001 .

[16]  R. Fall,et al.  Isoprene synthase: From biochemical mechanism to emission algorithm , 1998 .

[17]  B. Lighthart The ecology of bacteria in the alfresco atmosphere , 1997 .

[18]  P. Crutzen,et al.  Atmospheric aerosols: Biogeochemical sources and role in atmospheric chemistry , 1997 .

[19]  Dennis D. Baldocchi,et al.  Response of a Deciduous Forest to the Mount Pinatubo Eruption: Enhanced Photosynthesis , 2003, Science.

[20]  Franz X. Meixner,et al.  Biogeochemical cycling of carbon, water, energy, trace gases, and aerosols in Amazonia: The LBA‐EUSTACH experiments , 2002 .

[21]  Peter B. Vose,et al.  Amazon Basin: A System in Equilibrium , 1984, Science.

[22]  M. Facchini,et al.  Cloud albedo enhancement by surface-active organic solutes in growing droplets , 1999, Nature.

[23]  M. Andreae,et al.  Smoking Rain Clouds over the Amazon , 2004, Science.

[24]  J. Kesselmeier,et al.  Biogenic Volatile Organic Compounds (VOC): An Overview on Emission, Physiology and Ecology , 1999 .

[25]  M. Bergin,et al.  Influence of aerosol dry deposition on photosynthetically active radiation available to plants: A case study in the Yangtze Delta Region of China , 2001 .

[26]  N. Mihalopoulos,et al.  Formation of atmospheric particles from organic acids produced by forests , 1998, Nature.