Probabilistic fiber element modeling of reinforced concrete structures

Abstract A computational model based on a stochastic fiber element model is developed in this study. This model can be utilized for probabilistic evaluation of reinforced concrete (RC) members. The stochastic fiber element model is developed by combining the conventional fiber element formulation and the midpoint method for random field representation, to account for spatial variability of material and geometrical properties within a structural member. Three verification examples show the capability of the developed model in estimating the nonlinear structural behavior including softening. As an application of the developed computational model, a probabilistic strength analysis of a RC column is conducted in terms of the axial load–bending moment interaction. An approach of evaluating RC structural systems using the developed probabilistic computational model is also presented.

[1]  G. I. Schuëller,et al.  The influence of spatial correlation of concrete strength on the failure probabilities of reinforced concrete chinneys , 1989 .

[2]  A. Kiureghian,et al.  Multivariate distribution models with prescribed marginals and covariances , 1986 .

[3]  Sashi K. Kunnath,et al.  Cumulative Seismic Damage of Reinforced Concrete Bridge Piers , 1997 .

[4]  Sher Ali Mirza,et al.  Monte Carlo Study of Strength of Concrete Columns , 1978 .

[5]  Ahmed Ghobarah,et al.  SEISMIC RELIABILITY ASSESSMENT OF EXISTING REINFORCED CONCRETE BUILDINGS , 1998 .

[6]  M. J. Clarke,et al.  A study of incremental-iterative strategies for non-linear analyses , 1990 .

[7]  Armen Der Kiureghian,et al.  The stochastic finite element method in structural reliability , 1988 .

[8]  Duane C. Hanselman,et al.  Mastering MATLAB , 2004 .

[9]  Gregory G. Deierlein,et al.  Nonlinear Analysis of Mixed Steel-Concrete Frames. II: Implementation and Verification , 2001 .

[10]  Angelo D'Ambrisi,et al.  Modeling of Cyclic Shear Behavior in RC Members , 1999 .

[11]  Anne S. Kiremidjian,et al.  Method for Probabilistic Evaluation of Seismic Structural Damage , 1996 .

[12]  Marios K. Chryssanthopoulos,et al.  Probabilistic evaluation of behaviour factors in EC8-designed R/C frames , 2000 .

[13]  S. Ali Mirza,et al.  SLENDERNESS AND STRENGTH RELIABILITY OF REINFORCED CONCRETE COLUMNS , 1989 .

[14]  J. G. Macgregor,et al.  Statistical Descriptions of Strength of Concrete , 1979 .

[15]  J. Mander,et al.  Theoretical stress strain model for confined concrete , 1988 .

[16]  J. G. Macgregor,et al.  Variability of Mechanical Properties of Reinforcing Bars , 1985 .

[17]  A. Kiureghian,et al.  OPTIMAL DISCRETIZATION OF RANDOM FIELDS , 1993 .

[18]  Dan M. Frangopol,et al.  A new look at reliability of reinforced concrete columns , 1996 .

[19]  Mircea Grigoriu,et al.  STOCHASTIC FINITE ELEMENT ANALYSIS OF SIMPLE BEAMS , 1983 .

[20]  Marios K. Chryssanthopoulos,et al.  Seismic Reliability of RC Frames with Uncertain Drift and Member Capacity , 1999 .

[21]  Sher Ali Mirza,et al.  Variations in Dimensions of Reinforced Concrete Members , 1979 .

[22]  Masanobu Shinozuka,et al.  PROBABILISTIC MODELING OF CONCRETE STRUCTURES , 1972 .

[23]  Kazuhiko Kawashima,et al.  STRESS-STRAIN MODEL FOR CONFINED REINFORCED CONCRETE IN BRIDGE PIERS , 1997 .