Linking multiple relaxation, power-law attenuation, and fractional wave equations.
暂无分享,去创建一个
[1] N. H. Abel. Auflösung einer mechanischen Aufgabe. , 1826 .
[2] A. Wiman. Über den Fundamentalsatz in der Teorie der FunktionenEa(x) , 1905 .
[3] I. S. Gradshteyn,et al. Table of Integrals, Series, and Products , 1976 .
[4] M. Caputo. Linear Models of Dissipation whose Q is almost Frequency Independent-II , 1967 .
[5] Peter J. Torvik,et al. Fractional calculus-a di erent approach to the analysis of viscoelastically damped structures , 1983 .
[6] R. Bagley,et al. On the Fractional Calculus Model of Viscoelastic Behavior , 1986 .
[7] R. Waag,et al. An equation for acoustic propagation in inhomogeneous media with relaxation losses , 1989 .
[8] R. N. Pillai. On Mittag-Leffler functions and related distributions , 1990 .
[9] T. Nonnenmacher,et al. Fractional integral operators and Fox functions in the theory of viscoelasticity , 1991 .
[10] F. Lizzi. Ultrasound Imaging , 1991, Proceedings Technology Requirements for Biomedical Imaging.
[11] M. M. Djrbashian,et al. Harmonic analysis and boundary value problems in the complex domain , 1993 .
[12] A. J. Zuckerwar,et al. Atmospheric absorption of sound: Further developments , 1995 .
[13] A. P. Berkhoff,et al. Simulation of ultrasonic imaging with linear arrays in causal absorptive media. , 1996, Ultrasound in medicine & biology.
[14] I. Podlubny. Fractional differential equations , 1998 .
[15] Michael A. Ainslie,et al. A simplified formula for viscous and chemical absorption in sea water , 1998 .
[16] T. Szabo,et al. A model for longitudinal and shear wave propagation in viscoelastic media , 2000, The Journal of the Acoustical Society of America.
[17] S Holm,et al. Modified Szabo's wave equation models for lossy media obeying frequency power law. , 2003, The Journal of the Acoustical Society of America.
[18] T. D. Mast,et al. Simulation of ultrasonic focus aberration and correction through human tissue. , 2002, The Journal of the Acoustical Society of America.
[19] S. Holm,et al. Fractional Laplacian time-space models for linear and nonlinear lossy media exhibiting arbitrary frequency power-law dependency. , 2004, The Journal of the Acoustical Society of America.
[20] R. Cleveland,et al. Time domain simulation of nonlinear acoustic beams generated by rectangular pistons with application to harmonic imaging. , 2005, The Journal of the Acoustical Society of America.
[21] J. Mobley,et al. Causality-imposed (Kramers-Kronig) relationships between attenuation and dispersion , 2005, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.
[22] M. Wismer,et al. Finite element analysis of broadband acoustic pulses through inhomogenous media with power law attenuation. , 2006, The Journal of the Acoustical Society of America.
[23] Mark M Meerschaert,et al. Analytical time-domain Green's functions for power-law media. , 2008, The Journal of the Acoustical Society of America.
[24] J. Kelly,et al. Fractal ladder models and power law wave equations. , 2009, The Journal of the Acoustical Society of America.
[25] S. Holm,et al. A unifying fractional wave equation for compressional and shear waves. , 2010, The Journal of the Acoustical Society of America.
[26] José M. Carcione,et al. A generalization of the Fourier pseudospectral method , 2010 .
[27] B. Cox,et al. Modeling power law absorption and dispersion for acoustic propagation using the fractional Laplacian. , 2010, The Journal of the Acoustical Society of America.
[28] J. Carcione,et al. Computational poroelasticity — A review , 2010 .
[29] Arak M. Mathai,et al. Mittag-Leffler Functions and Their Applications , 2009, J. Appl. Math..
[30] S. P. Näsholm,et al. A causal and fractional all-frequency wave equation for lossy media. , 2011, The Journal of the Acoustical Society of America.
[31] Sverre Holm,et al. Nonlinear acoustic wave equations with fractional loss operators. , 2011, The Journal of the Acoustical Society of America.
[32] Michele Caputo,et al. Wave simulation in biologic media based on the Kelvin-Voigt fractional-derivative stress-strain relation. , 2011, Ultrasound in medicine & biology.