Serpentinization of the forearc mantle

[1]  John B. Shoven,et al.  I , Edinburgh Medical and Surgical Journal.

[2]  N. Christensen Elasticity of ultrabasic rocks , 1966 .

[3]  G. Batchelor,et al.  An Introduction to Fluid Dynamics , 1968 .

[4]  R. Coleman Plate tectonic emplacement of upper mantle peridotites along continental edges , 1971 .

[5]  J. Grow Crustal and Upper Mantle Structure of the Central Aleutian Arc , 1973 .

[6]  W. Brace,et al.  Electrical conductivity of serpentinized rocks to 6 kilobars , 1973 .

[7]  Roger N. Anderson,et al.  Geophysical and Geochemical Constraints at Converging Plate Boundaries?Part I: Dehydration in the Downgoing Slab , 1976 .

[8]  R. Currie,et al.  Magnetic anomalies and rock magnetizations in the southern Coast Mountains, British Columbia: possible relation to subduction , 1977 .

[9]  B. W. Evans Metamorphism of Alpine Peridotite and Serpentinite , 1977 .

[10]  D. Bamford Pn velocity anisotropy in a continental upper mantle , 1977 .

[11]  N. Christensen Ophiolites, seismic velocities and oceanic crustal structure , 1978 .

[12]  C. Froidevaux,et al.  Thermal transfer between the continental asthenosphere and the oceanic subducting lithosphere: Its effect on subcontinental convection , 1980 .

[13]  J. Gill Orogenic Andesites and Plate Tectonics , 1981 .

[14]  R. Armstrong,et al.  Petrologic, structural, and age relations of serpentinite, amphibolite, and blueschist in the Shuksan Suite of the Iron Mountain–Gee Point area, North Cascades, Washington , 1982 .

[15]  S. Kirby Rheology of the lithosphere , 1983 .

[16]  Julian A. Pearce,et al.  Characteristics and tectonic significance of supra-subduction zone ophiolites , 1984, Geological Society, London, Special Publications.

[17]  W. Seyfried,et al.  Hydrothermal serpentinization of peridotite within the oceanic crust: Experimental investigations of mineralogy and major element chemistry , 1986 .

[18]  S. Peacock Serpentinization and infiltration metasomatism in the Trinity peridotite, Klamath province, northern California: implications for subduction zones , 1987 .

[19]  E. E. Davis,et al.  Subduction of the Juan de Fuca Plate: Thermal consequences , 1988 .

[20]  Alan G. Jones,et al.  Resistivity cross section through the Juan de Fuca Subduction System and its tectonic implications , 1989 .

[21]  Roger N. Anderson,et al.  Drilling deep into young oceanic crust, Hole 504B, Costa Rica Rift , 1989 .

[22]  Mario Martínez,et al.  Two‐dimensional magnetotelluric inversion of the EMSLAB Lincoln Line , 1989 .

[23]  Y. Tatsumi Migration of fluid phases and genesis of basalt magmas in subduction zones , 1989 .

[24]  M. Barton,et al.  Fluid flow and metasomatism in a subduction zone hydrothermal system: Catalina Schist terrane, California , 1989 .

[25]  Kazuhiko Ito,et al.  Effects of H2O on elastic wave velocities in ultrabasic rocks at 900°C under 1 GPa , 1990 .

[26]  J. Arkani‐Hamed,et al.  The effects of serpentinization on density and magnetic susceptibility : a petrophysical model , 1990 .

[27]  J. Wakabayashi,et al.  A structural study of a metamorphic sole beneath the Josephine ophiolite, western Klamath terrane, California-Oregon , 1990 .

[28]  P. Johnson,et al.  U.S. west coast revisited: An aeromagnetic perspective , 1990 .

[29]  S. Peacock Fluid Processes in Subduction Zones , 1990, Science.

[30]  J. Lahr,et al.  Tomographic image of the Pacific Slab under southern Alaska , 1991 .

[31]  D. S. Harwood,et al.  Paleozoic and Early Mesozoic Paleogeographic Relations: Sierra Nevada, Klamath Mountains, and Related Terranes , 1991 .

[32]  J. Weeks,et al.  The frictional behavior of serpentinite: Implications for aseismic creep on shallow crustal faults , 1991 .

[33]  M. Mottl 21. PORE WATERS FROM SERPENTINITE SEAMOUNTS IN THE MARIANA AND IZU-BONIN FOREARCS, LEG 125: EVIDENCE FOR VOLATILES FROM THE SUBDUCTING SLAB1 , 1992 .

[34]  T. Ishii,et al.  Petrological studies of peridotites from Diapiric Serpentinite seamounts in the Izu-Ogasawara-Mariana forearc, Leg125 , 1992 .

[35]  D. Stevenson,et al.  Physical model of source region of subduction zone volcanics , 1992 .

[36]  M. Langseth,et al.  Fluids in accretionary prisms , 1990 .

[37]  Kelin Wang,et al.  Thermal constraints on the zone of major thrust earthquake failure: The Cascadia Subduction Zone , 1993 .

[38]  Larry J. Ruff,et al.  Depth of seismic coupling along subduction zones , 1993 .

[39]  J. Cassidy,et al.  S wave velocity structure of the Northern Cascadia Subduction Zone , 1993 .

[40]  Kelin Wang,et al.  Tectonic sediment thickening, fluid expulsion, and the thermal regime of subduction zone accretionary prisms: The Cascadia Margin off Vancouver Island , 1993 .

[41]  S. Peacock Large-scale hydration of the lithosphere above subducting slabs , 1993 .

[42]  T. Matsunaga,et al.  Curie point depth in northeast Japan and its correlation with regional thermal structure and seismicity , 1994 .

[43]  S. Peacock,et al.  Partial melting of subducting oceanic crust , 1994 .

[44]  Kelin Wang,et al.  Case for very low coupling stress on the Cascadia Ssubduction Fault , 1995 .

[45]  C. Manning Phase-Equilibrium Controls on SiO2Metasomatism by Aqueous Fluid in Subduction Zones: Reaction at Constant Pressure and Temperature , 1995 .

[46]  Walter D. Mooney,et al.  Seismic velocity structure and composition of the continental crust: A global view , 1995 .

[47]  R. Clowes,et al.  Lithospheric structure in the southern Canadian Cordillera from a network of seismic refraction lines , 1995 .

[48]  D. Christensen,et al.  Tomographic imaging of the Alaska subduction zone , 1995 .

[49]  P. Ulmer,et al.  Serpentine Stability to Mantle Depths and Subduction-Related Magmatism , 1995, Science.

[50]  Kelin Wang,et al.  The rupture zone of Cascadia great earthquakes from current deformation and the thermal regime , 1995 .

[51]  R. Rudnick,et al.  Nature and composition of the continental crust: A lower crustal perspective , 1995 .

[52]  C. G. Wheat,et al.  Mapping the fluid flow of the Mariana Mounds ridge flank hydrothermal system: Pore water chemical tracers , 1995 .

[53]  P. Fryer Evolution of the Mariana Convergent Plate Margin System , 1996 .

[54]  S. Peacock Thermal and petrologic structure of subduction zones , 2013 .

[55]  N. Christensen Poisson's ratio and crustal seismology , 1996 .

[56]  M. Zamora,et al.  Seismic waves velocities and anisotropy in serpentinized peridotites from xigaze ophiolite: Abundance of serpentine in slow spreading ridge , 1996 .

[57]  T. Kanazawa,et al.  Continental Crust, Crustal Underplating, and Low-Q Upper Mantle Beneath an Oceanic Island Arc , 1996, Science.

[58]  I. Sacks,et al.  Thermal and dynamical evolution of the upper mantle in subduction zones , 1997 .

[59]  M. Yamano,et al.  The seismogenic zone of subduction thrust faults , 1997 .

[60]  D. Lockner,et al.  Strengths of serpentinite gouges at elevated temperatures , 1997 .

[61]  D. Miller,et al.  A new assessment of the abundance of serpentinite in the oceanic crust , 1997 .

[62]  V. Haak,et al.  Electromagnetic study of the active continental margin in northern Chile , 1997 .

[63]  S. Poli,et al.  Experimentally based water budgets for dehydrating slabs and consequences for arc magma generation , 1998 .

[64]  Tom Parsons,et al.  A new view into the Cascadia subduction zone and volcanic arc: Implications for earthquake hazards along the Washington margin , 1998 .

[65]  S. Myers,et al.  Lithospheric-scale structure across the Bolivian Andes from tomographic images of velocity and attenuation , 1998 .

[66]  K. Suyehiro,et al.  Implications from the seismic crustal structure of the northern Izu–Bonin arc , 1998 .

[67]  A. Förster,et al.  Heat-flow density across the Central Andean subduction zone , 1998 .

[68]  Crustal seismic velocity and density structure of the Intermontane and Coast belts, southwestern Cordillera , 1998 .

[69]  Charles H. Langmuir,et al.  The chemical composition of subducting sediment and its consequences for the crust and mantle , 1998 .

[70]  Kelin Wang,et al.  Seismic consequences of warm versus cool subduction metamorphism: examples from southwest and northeast japan , 1999, Science.

[71]  F. Schilling,et al.  Crustal thickening processes in the Central Andes and the different natures of the Moho-discontinuity , 1999 .

[72]  M. Mottl,et al.  Mariana blueschist mud volcanism: Implications for conditions within the subduction zone , 1999 .

[73]  T. Lewis,et al.  Geophysical consequences of the Cordillera–Craton thermal transition in southwestern Canada , 1999 .

[74]  Simon M. Peacock,et al.  Hydrous minerals in the mantle wedge and the maximum depth of subduction thrust earthquakes , 1999 .

[75]  R. Saltus,et al.  Alaska aeromagnetic compilation; digital grids and survey data , 1999 .

[76]  G. Asch,et al.  Three‐dimensional models of P wave velocity and P‐to‐S velocity ratio in the southern central Andes by simultaneous inversion of local earthquake data , 1999 .

[77]  Kelin Wang,et al.  The updip and downdip limits to great subduction earthquakes: Thermal and structural models of Casca , 1999 .

[78]  S. Klemperer,et al.  Structure of an island‐arc: Wide‐angle seismic studies in the eastern Aleutian Islands, Alaska , 1999 .

[79]  O. Oncken,et al.  Seismic reflection image revealing offset of Andean subduction-zone earthquake locations into oceanic mantle , 1999 .

[80]  Y. Lagabrielle,et al.  Magmatic–tectonic effects of high thermal regime at the site of active ridge subduction: the Chile Triple Junction model , 2000 .

[81]  Shin'ichiro Kamiya,et al.  Seismological evidence for the existence of serpentinized wedge mantle , 2000 .

[82]  Dapeng Zhao,et al.  New advances of seismic tomography and its applications to subduction zones and earthquake fault zones: A review , 2001 .

[83]  D. Lockner,et al.  How brucite may affect the frictional properties of serpentinite , 2001 .

[84]  R. Carlson The abundance of ultramafic rocks in Atlantic Ocean crust , 2001 .

[85]  S. Peacock Are the lower planes of double seismic zones caused by serpentine dehydration in subducting oceanic mantle , 2001 .

[86]  Kelin Wang,et al.  A Silent Slip Event on the Deeper Cascadia Subduction Interface , 2001, Science.

[87]  R. Hyndman,et al.  An inverted continental Moho and serpentinization of the forearc mantle , 2002, Nature.

[88]  Simon M. Peacock,et al.  Subduction factory 1. Theoretical mineralogy, densities, seismic wave speeds, and H 2 O contents , 2003 .

[89]  S. Peacock Thermal Structure and Metamorphic Evolution of Subducting Slabs , 2013 .

[90]  C. Snelson,et al.  Seismic evidence for widespread serpentinized forearc upper mantle along the Cascadia margin , 2003 .