Mark DorwardMichal ZawadzkiChristopher CozensHelen FalconerHelen Powers • Ian M. OvertonC. A. Johannes van NiekerkXu PengPrakash PatelRoger A. Garrett • David PrangishviliCatherine H. BottingPeter J. CooteDavid T. F. DrydenGeoffrey J. Barton • Ulrich Schwarz-LinekGregory L. ChallisGarry L. TaylorMal

The Scottish Structural Proteomics Facility was funded to develop a laboratory scale approach to high throughput structure determination. The effort was suc- cessful in that over 40 structures were determined. These structures and the methods harnessed to obtain them are reported here. This report reflects on the value of auto- mation but also on the continued requirement for a high degree of scientific and technical expertise. The efficiency of the process poses challenges to the current paradigm of structural analysis and publication. In the 5 year period we published ten peer-reviewed papers reporting structural data arising from the pipeline. Nevertheless, the number of structures solved exceeded our ability to analyse and publish each new finding. By reporting the experimental details and depositing the structures we hope to maximize the impact of the project by allowing others to follow up the relevant biology.

[1]  H. Biebl,et al.  Production of selenomethionine-labelled proteins using simplified culture conditions and generally applicable host/vector systems. , 2001, Applied Microbiology and Biotechnology.

[2]  Obradovic,et al.  Predicting Protein Disorder for N-, C-, and Internal Regions. , 1999, Genome informatics. Workshop on Genome Informatics.

[3]  Bernhard Rupp,et al.  Maximum-likelihood crystallization. , 2003, Journal of structural biology.

[4]  Jack Snoeyink,et al.  Nucleic Acids Research Advance Access published April 22, 2007 MolProbity: all-atom contacts and structure validation for proteins and nucleic acids , 2007 .

[5]  Md. Arif Sheikh,et al.  Crystal structure of VC1805, a conserved hypothetical protein from a Vibrio cholerae pathogenicity island, reveals homology to human p32 , 2008, Proteins.

[6]  A. Krogh,et al.  Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. , 2001, Journal of molecular biology.

[7]  Lester G. Carter,et al.  Crystal structure and silica condensing activities of silicatein alpha-cathepsin L chimeras. , 2008, Chemical communications.

[8]  Lester G. Carter,et al.  AcsD catalyzes enantioselective citrate desymmetrization in siderophore biosynthesis , 2009, Nature chemical biology.

[9]  Geoffrey J Barton,et al.  A normalised scale for structural genomics target ranking: The OB‐Score , 2006, FEBS letters.

[10]  Martin Rosenberg,et al.  Identification of Critical Staphylococcal Genes Using Conditional Phenotypes Generated by Antisense RNA , 2001, Science.

[11]  T. Sixma,et al.  First steps towards effective methods in exploiting high-throughput technologies for the determination of human protein structures of high biomedical value. , 2006, Acta crystallographica. Section D, Biological crystallography.

[12]  Ruben Abagyan,et al.  SGC - Structural Biology and Human Health: A New Approach to Publishing Structural Biology Results , 2009, PloS one.

[13]  R. Garrett,et al.  Morphology and genome organization of the virus PSV of the hyperthermophilic archaeal genera Pyrobaculum and Thermoproteus: a novel virus family, the Globuloviridae. , 2004, Virology.

[14]  Lester G. Carter,et al.  Unusual chromophore and cross-links in ranasmurfin: a blue protein from the foam nests of a tropical frog. , 2008, Angewandte Chemie.

[15]  John H. White,et al.  Extensive DNA mimicry by the ArdA anti-restriction protein and its role in the spread of antibiotic resistance , 2009, Nucleic acids research.

[16]  Haruki Nakamura,et al.  The worldwide Protein Data Bank (wwPDB): ensuring a single, uniform archive of PDB data , 2006, Nucleic Acids Res..

[17]  Kevin Cowtan,et al.  research papers Acta Crystallographica Section D Biological , 2005 .

[18]  L. Vuillard,et al.  The toxicity of recombinant proteins in Escherichia coli: a comparison of overexpression in BL21(DE3), C41(DE3), and C43(DE3). , 2004, Protein expression and purification.

[19]  J. Wootton,et al.  Analysis of compositionally biased regions in sequence databases. , 1996, Methods in enzymology.

[20]  Mark A. Girolami,et al.  BIOINFORMATICS ORIGINAL PAPER doi:10.1093/bioinformatics/btn055 Sequence analysis ParCrys: a Parzen window density estimation approach , 2022 .

[21]  B. Rost Twilight zone of protein sequence alignments. , 1999, Protein engineering.

[22]  Howard Xu,et al.  A genome‐wide strategy for the identification of essential genes in Staphylococcus aureus , 2002, Molecular microbiology.

[23]  B Marshall,et al.  Gene Ontology Consortium: The Gene Ontology (GO) database and informatics resource , 2004, Nucleic Acids Res..

[24]  Lester G. Carter,et al.  Expression, purification, crystallization, data collection and preliminary biochemical characterization of methicillin-resistant Staphylococcus aureus Sar2028, an aspartate/tyrosine/phenylalanine pyridoxal-5'-phosphate-dependent aminotransferase. , 2007, Acta crystallographica. Section F, Structural biology and crystallization communications.

[25]  D E McRee,et al.  XtalView/Xfit--A versatile program for manipulating atomic coordinates and electron density. , 1999, Journal of structural biology.

[26]  Collaborative Computational,et al.  The CCP4 suite: programs for protein crystallography. , 1994, Acta crystallographica. Section D, Biological crystallography.

[27]  Erin Beck,et al.  The comprehensive microbial resource , 2000, Nucleic Acids Res..

[28]  P. Evans,et al.  Scaling and assessment of data quality. , 2006, Acta crystallographica. Section D, Biological crystallography.

[29]  Christine A Orengo,et al.  Target selection for structural genomics: an overview. , 2008, Methods in molecular biology.

[30]  Zheng Rong Yang,et al.  RONN: the bio-basis function neural network technique applied to the detection of natively disordered regions in proteins , 2005, Bioinform..

[31]  George M Sheldrick,et al.  Substructure solution with SHELXD. , 2002, Acta crystallographica. Section D, Biological crystallography.

[32]  Geoffrey J Barton,et al.  The structure of serine palmitoyltransferase; gateway to sphingolipid biosynthesis. , 2007, Journal of molecular biology.

[33]  R. Garrett,et al.  Sequences and replication of genomes of the archaeal rudiviruses SIRV1 and SIRV2: relationships to the archaeal lipothrixvirus SIFV and some eukaryal viruses. , 2001, Virology.

[34]  S. Brunak,et al.  Improved prediction of signal peptides: SignalP 3.0. , 2004, Journal of molecular biology.

[35]  Thomas C. Terwilliger,et al.  Electronic Reprint Biological Crystallography Maximum-likelihood Density Modification , 2022 .

[36]  R J Read,et al.  Crystallography & NMR system: A new software suite for macromolecular structure determination. , 1998, Acta crystallographica. Section D, Biological crystallography.

[37]  D. E. Anderson,et al.  Tobacco etch virus protease: mechanism of autolysis and rational design of stable mutants with wild-type catalytic proficiency. , 2001, Protein engineering.

[38]  J. Naismith,et al.  A simple and efficient expression and purification system using two newly constructed vectors. , 2009, Protein expression and purification.

[39]  G. Murshudov,et al.  Refinement of macromolecular structures by the maximum-likelihood method. , 1997, Acta crystallographica. Section D, Biological crystallography.

[40]  Randy J Read,et al.  Electronic Reprint Biological Crystallography Phenix: Building New Software for Automated Crystallographic Structure Determination Biological Crystallography Phenix: Building New Software for Automated Crystallographic Structure Determination , 2022 .

[41]  Leszek Rychlewski,et al.  XtalPred: a web server for prediction of protein crystallizability , 2007, Bioinform..

[42]  Geoffrey J. Barton,et al.  TarO: a target optimisation system for structural biology , 2008, Nucleic Acids Res..

[43]  J. Walker,et al.  Over-production of proteins in Escherichia coli: mutant hosts that allow synthesis of some membrane proteins and globular proteins at high levels. , 1996, Journal of molecular biology.

[44]  Cathy H. Wu,et al.  UniProt: the Universal Protein knowledgebase , 2004, Nucleic Acids Res..

[45]  L. Holm,et al.  The Pfam protein families database , 2005, Nucleic Acids Res..

[46]  U. K. Laemmli,et al.  Cleavage of Structural Proteins during the Assembly of the Head of Bacteriophage T4 , 1970, Nature.

[47]  Lester G. Carter,et al.  Purification, crystallization and data collection of methicillin-resistant Staphylococcus aureus Sar2676, a pantothenate synthetase. , 2007, Acta crystallographica. Section F, Structural biology and crystallization communications.

[48]  Lester G. Carter,et al.  Structure of the DNA Repair Helicase XPD , 2008, Cell.

[49]  Lester G. Carter,et al.  Structure of the DNA Repair Helicase Hel308 Reveals DNA Binding and Autoinhibitory Domains* , 2008, Journal of Biological Chemistry.

[50]  Rebecca Page,et al.  Protein biophysical properties that correlate with crystallization success in Thermotoga maritima: maximum clustering strategy for structural genomics. , 2004, Journal of molecular biology.

[51]  Wolfgang Kabsch,et al.  Automatic processing of rotation diffraction data from crystals of initially unknown symmetry and cell constants , 1993 .

[52]  Lester G. Carter,et al.  Structure of the heterotrimeric PCNA from Sulfolobus solfataricus , 2006, Acta crystallographica. Section F, Structural biology and crystallization communications.

[53]  Z. Otwinowski,et al.  [20] Processing of X-ray diffraction data collected in oscillation mode. , 1997, Methods in enzymology.

[54]  F. Studier,et al.  Protein production by auto-induction in high density shaking cultures. , 2005, Protein expression and purification.

[55]  Lester G. Carter,et al.  Structural and functional characterisation of a conserved archaeal RadA paralog with antirecombinase activity. , 2009, Journal of molecular biology.

[56]  Thomas C. Terwilliger,et al.  Automated MAD and MIR structure solution , 1999, Acta crystallographica. Section D, Biological crystallography.