A multimodal cell census and atlas of the mammalian primary motor cortex
暂无分享,去创建一个
Satrajit S. Ghosh | Nicholas N. Foster | Evan Z. Macosko | A. S. Booeshaghi | Ricky S. Adkins | Joshua D. Welch | Timothy L. Tickle | Trygve E Bakken | Staci A. Sorensen | Julie A. Harris | Karla E. Hirokawa | Joshua T. Hatfield | Fenna M. Krienen | Mohammad S. Rashid | S. Linnarsson | A. Regev | L. Pachter | E. Callaway | G. Feng | S. Mccarroll | Philipp Berens | C. Cadwell | A. Tolias | B. Helba | S. Dudoit | Quanxin Wang | T. Nguyen | Wayne Wakeman | Hanchuan Peng | M. Hawrylycz | Hongkui Zeng | Bosiljka Tasic | Zizhen Yao | Kimberly A. Smith | Darren Bertagnolli | J. Goldy | Olivia Fong | K. Lathia | Christine Rimorin | Michael Tieu | Rachael Larsen | Tamara Casper | Matthew Kroll | N. Dee | S. Sunkin | T. Daigle | E. Lein | Xiaolong Jiang | Greg Hood | R. Sandberg | Z. J. Huang | Hong-wei Dong | Lydia Ng | C. Thompson | P. Mitra | Stephan Fischer | B. Lim | J. Gee | E. Purdom | J. Ngai | H. Bravo | M. Martone | G. Ascoli | E. Macosko | Melissa Goldman | Anup Mahurkar | Arun Narasimhan | P. Osten | J. Mizrachi | Rebecca K. Chance | X. Zhuang | B. Ren | P. Kharchenko | Xin Jin | Matthew Jacobs | Nikolaos Barkas | G. Horwitz | K. Konwar | J. Ecker | J. Crabtree | Kelly Street | D. Risso | Nongluk Plongthongkum | Kun Zhang | C. Luo | Joseph R. Nery | E. Mukamel | Jayaram Kancherla | A. Ko | A. Bandrowski | D. Diep | J. Ting | Zhuzhu Zhang | Q. Luo | H. Gong | Y. Halchenko | J. Chun | S. Ding | R. Dalley | Huaming Chen | Joshua Orvis | Stephen W. Eichhorn | Helen S. Bateup | Valentine Svensson | C. Vanderburg | H. Creasy | M. Giglio | Victor Felix | Owen R. White | D. Kobak | Liya Ding | J. Gillis | Lei Qu | Phil Lesnar | B. Lake | L. Hartmanis | Angeline C. Rivkin | Jingtian Zhou | J. Lucero | Rosa G. Castanon | A. Pinto-Duarte | Conor Fitzpatrick | Carolyn O’Connor | M. Behrens | S. Preissl | Rongxin Fang | Vasilis Ntranos | K. Van den Berge | Zhao Feng | Anan Li | Xiangning Li | Tao Jiang | Miao Ren | Jing Yuan | Ian Bowman | Nikolas L. Jorstad | C. Keene | B. Dichter | R. Hertzano | E. D. Vaishnav | Lin Gou | P. Nicovich | J. Smith | Zongcai Ruan | C. Colantuoni | S. Ament | M. Crow | Olivier B. Poirion | Brian R. Herb | R. Hodge | Saroja Somasundaram | Xiaomeng Hou | Y. Li | Elanine Miranda | Z. H. Tan | Jim Berg | B. Kalmbach | Kirsten Crichton | Florence D. D'Orazi | D. McMillen | Stephanie Mok | J. Sulc | A. Torkelson | Herman Tung | Hanqing Liu | Fangming Xie | Andrew I. Aldridge | Anna Bartlett | T. Biancalani | Elizabeth L. Dougherty | Qiwen Hu | Naeem M. Nadaf | Sheng-Yong Niu | Julia K. Osteen | Thanh Pham | Cindy T. J. van Velthoven | Xinxin Wang | Lijuan Hu | Meng Zhang | Brian Zingg | A. Yanny | Ethan J. Armand | K. Siletti | D. Hockemeyer | Houri Hintiryan | X. W. Yang | Bingxing Huo | E. Shen | R. Palaniswamy | Scott F. Owen | Carrie McCracken | F. Scala | Yves Bernaerts | S. Laturnus | J. Castro | K. Matho | Peng Wang | M. Veldman | M. Naeemi | Yuanyuan Li | Tanya L. Daigle | Kuo-Fen Lee | M. Grauer | Nora M. Reed | Christine S. Liu | W. Romanow | Robert Carter | D. Stafford | Carter R. Palmer | Jared B. Smith | Shalaka Mulherkar | R. Muñoz-Castañeda | Xueyan Jia | Tom Gillespie | M. Nunn | Mike Schor | Dustin Olley | Matteo Bernabucci | Wei-ping Tian | Lara Boggeman | Shona Allen | Xu An | Samik Banerjee | Benjamin Carlin | Apaala Chatterjee | Kylee Degatano | Bertha Dominguez | Weixiu Dong | William Galbavy | Tony Ito-Cole | Shengdian Jiang | Kathleen Kelly | F. Khajouei | Gukhan Kim | Daniel J. Kramer | Xiuli Kuang | H. Kuo | Angus Y. Lee | Cheng-Ta Lee | Xu Li | Yaoyao Li | Lijuan Liu | Paula Assakura Miyazaki | Lance Nickel | Yan Pang | A. Ropelewski | Hector Roux de Bézieux | Steven Savoia | Yuanyuan Song | Pengcheng Tan | Minh Vu | Yimin Wang | Yun Wang | Elora W. Williams | Peng Xie | Feng Xiong | L. Yin | Yang Yu | Sujun Zhao | Xuan Zhao | A. Li | A. Mahurkar | O. White | P. A. Miyazaki | Naeem M Nadaf | Qingming Luo | R. Castanon | S. Sorensen | J. Berg | Farzaneh Khajouei | David A. Stafford | H. C. Bravo | Tommaso Biancalani | Brian Helba | Rodrigo Muñoz-Castañeda
[1] Staci A. Sorensen,et al. Morphological diversity of single neurons in molecularly defined cell types , 2021, Nature.
[2] Brian R. Lee,et al. Human neocortical expansion involves glutamatergic neuron diversification , 2021, Nature.
[3] Julie A. Harris,et al. Genetic dissection of the glutamatergic neuron system in cerebral cortex , 2021, Nature.
[4] Evan Z. Macosko,et al. Comparative cellular analysis of motor cortex in human, marmoset and mouse , 2021, Nature.
[5] Evan Z. Macosko,et al. A transcriptomic and epigenomic cell atlas of the mouse primary motor cortex , 2021, Nature.
[6] Hongkui Zeng,et al. Spatially resolved cell atlas of the mouse primary motor cortex by MERFISH , 2021, Nature.
[7] Evan Z. Macosko,et al. Peer Review File Manuscript Title: A transcriptomic atlas of mouse cerebellar cortex reveals novel cell types Editorial Notes: Reviewer Comments & Author Rebuttals , 2020 .
[8] Garreck H. Lenz,et al. Enhancer viruses for combinatorial cell-subclass-specific labeling , 2021, Neuron.
[9] H. Gong,et al. High-definition imaging using line-illumination modulation microscopy , 2021, Nature Methods.
[10] B. Ren,et al. Comprehensive analysis of single cell ATAC-seq data with SnapATAC , 2021, Nature Communications.
[11] E. Mukamel,et al. Single-Cell Sequencing of Brain Cell Transcriptomes and Epigenomes , 2021, Neuron.
[12] Brian R. Long,et al. Spatially resolved transcriptomics in neuroscience , 2021, Nature Methods.
[13] X. Zhuang. Spatially resolved single-cell genomics and transcriptomics by imaging , 2021, Nature Methods.
[14] Hongkui Zeng,et al. A taxonomy of transcriptomic cell types across the isocortex and hippocampal formation , 2020, Cell.
[15] Philipp Berens,et al. Phenotypic variation of transcriptomic cell types in mouse motor cortex , 2020, Nature.
[16] Brian R. Lee,et al. Integrated Morphoelectric and Transcriptomic Classification of Cortical GABAergic Cells , 2020, Cell.
[17] Liya Ding,et al. Cellular anatomy of the mouse primary motor cortex , 2020, Nature.
[18] Tom P. Franken,et al. Viral manipulation of functionally distinct interneurons in mice, non-human primates and humans , 2020, Nature Neuroscience.
[19] Hongkui Zeng,et al. Brainwide Genetic Sparse Cell Labeling to Illuminate the Morphology of Neurons and Glia with Cre-Dependent MORF Mice , 2020, Neuron.
[20] Evan Z. Macosko,et al. Molecular Logic of Cellular Diversification in the Mammalian Cerebral Cortex , 2020, bioRxiv.
[21] Hongkui Zeng,et al. Molecular, spatial and projection diversity of neurons in primary motor cortex revealed by in situ single-cell transcriptomics , 2020, bioRxiv.
[22] Kyle J. Gaulton,et al. An atlas of gene regulatory elements in adult mouse cerebrum , 2020, Nature.
[23] L. Ng,et al. The Allen Mouse Brain Common Coordinate Framework: A 3D Reference Atlas , 2020, Cell.
[24] Jesse R. Dixon,et al. DNA methylation atlas of the mouse brain at single-cell resolution , 2020, Nature.
[25] Nicholas N. Foster,et al. An open access mouse brain flatmap and upgraded rat and human brain flatmaps based on current reference atlases , 2020, The Journal of comparative neurology.
[26] Partha P. Mitra,et al. Genetic dissection of glutamatergic neuron subpopulations and developmental trajectories in the cerebral cortex , 2020, bioRxiv.
[27] Hehuang Xie,et al. Epigenetic regulation of neuronal cell specification inferred with single cell “Omics” data , 2020, Computational and structural biotechnology journal.
[28] Mohammad S. Rashid,et al. Epigenomic diversity of cortical projection neurons in the mouse brain , 2020, Nature.
[29] Brian R. Lee,et al. Human cortical expansion involves diversification and specialization of supragranular intratelencephalic-projecting neurons , 2020, bioRxiv.
[30] Christof Koch,et al. Evolution of cellular diversity in primary motor cortex of human, marmoset monkey, and mouse , 2020, bioRxiv.
[31] Aviv Regev,et al. A transcriptomic atlas of the mouse cerebellum reveals regional specializations and novel cell types , 2020, bioRxiv.
[32] Evan Z. Macosko,et al. An integrated transcriptomic and epigenomic atlas of mouse primary motor cortex cell types , 2020, bioRxiv.
[33] F. Claudi,et al. Brainrender: a python-based software for visualizing anatomically registered data , 2020, bioRxiv.
[34] Hongkui Zeng,et al. Phenotypic variation within and across transcriptomic cell types in mouse motor cortex , 2020, bioRxiv.
[35] Brian R. Lee,et al. Toward an integrated classification of neuronal cell types: morphoelectric and transcriptomic characterization of individual GABAergic cortical neurons , 2020, bioRxiv.
[36] S. Quake,et al. Continuous and Discrete Neuron Types of the Adult Murine Striatum , 2019, Neuron.
[37] Phillip A. Richmond,et al. JASPAR 2020: update of the open-access database of transcription factor binding profiles , 2019, Nucleic Acids Res..
[38] Concha Bielza,et al. A community-based transcriptomics classification and nomenclature of neocortical cell types , 2019, Nature Neuroscience.
[39] Jesse R. Dixon,et al. Single nucleus multi-omics links human cortical cell regulatory genome diversity to disease risk variants , 2019, bioRxiv.
[40] Yun Wang,et al. Hierarchical organization of cortical and thalamic connectivity , 2019, Nature.
[41] David J. Anderson,et al. Multimodal Analysis of Cell Types in a Hypothalamic Node Controlling Social Behavior , 2019, Cell.
[42] Kun Zhang,et al. High-throughput sequencing of the transcriptome and chromatin accessibility in the same cell , 2019, Nature Biotechnology.
[43] Christopher P. Tzeng,et al. A scalable platform for the development of cell-type-specific viral drivers , 2019, eLife.
[44] Lior Pachter,et al. A curated database reveals trends in single-cell transcriptomics , 2019, bioRxiv.
[45] Allan R. Jones,et al. Conserved cell types with divergent features in human versus mouse cortex , 2019, Nature.
[46] David Kulp,et al. Innovations in Primate Interneuron Repertoire , 2019, bioRxiv.
[47] Martin J. Aryee,et al. Droplet-based combinatorial indexing for massive-scale single-cell chromatin accessibility , 2019, Nature Biotechnology.
[48] Shaoqun Zeng,et al. Brain-wide single neuron reconstruction reveals morphological diversity in molecularly defined striatal, thalamic, cortical and claustral neuron types , 2019, bioRxiv.
[49] Z Josh Huang,et al. The diversity of GABAergic neurons and neural communication elements , 2019, Nature Reviews Neuroscience.
[50] Evan Z. Macosko,et al. Single-Cell Multi-omic Integration Compares and Contrasts Features of Brain Cell Identity , 2019, Cell.
[51] Paul J. Hoffman,et al. Comprehensive Integration of Single-Cell Data , 2018, Cell.
[52] J. Ngai,et al. Perspectives on defining cell types in the brain , 2019, Current Opinion in Neurobiology.
[53] Bonnie Berger,et al. Efficient integration of heterogeneous single-cell transcriptomes using Scanorama , 2019, Nature Biotechnology.
[54] Kai Zhang,et al. SnapATAC: A Comprehensive Analysis Package for Single Cell ATAC-seq , 2019, bioRxiv.
[55] B. Ren,et al. Fast and Accurate Clustering of Single Cell Epigenomes Reveals Cis-Regulatory Elements in Rare Cell Types , 2019 .
[56] Andrew C. Adey,et al. The accessible chromatin landscape of the murine hippocampus at single-cell resolution , 2019, Genome research.
[57] Michael L. Hines,et al. Neuron Names: A Gene- and Property-Based Name Format, With Special Reference to Cortical Neurons , 2019, Front. Neuroanat..
[58] M. Mortrud,et al. Functional enhancer elements drive subclass-selective expression from mouse to primate neocortex , 2019, bioRxiv.
[59] Trygve E Bakken,et al. Epigenetic landscape and AAV targeting of human neocortical cell classes , 2019 .
[60] Michael N. Economo,et al. Reconstruction of 1,000 Projection Neurons Reveals New Cell Types and Organization of Long-Range Connectivity in the Mouse Brain , 2019, Cell.
[61] Garreck H. Lenz,et al. Enhancer viruses and a transgenic platform for combinatorial cell subclass-specific labeling , 2019 .
[62] Garreck H. Lenz,et al. Prospective, brain-wide labeling of neuronal subclasses with enhancer-driven AAVs , 2019, bioRxiv.
[63] Vincent A. Traag,et al. From Louvain to Leiden: guaranteeing well-connected communities , 2018, Scientific Reports.
[64] Xiaoyin Chen,et al. High-Throughput Mapping of Long-Range Neuronal Projection Using In Situ Sequencing , 2018, Cell.
[65] S. Tole,et al. Lhx2, an evolutionarily conserved, multifunctional regulator of forebrain development , 2019, Brain Research.
[66] Nimrod D. Rubinstein,et al. Molecular, spatial, and functional single-cell profiling of the hypothalamic preoptic region , 2018, Science.
[67] Mauro A. A. Castro,et al. The chromatin accessibility landscape of primary human cancers , 2018, Science.
[68] Steve Mao,et al. Cancer chromatin accessibility landscape , 2018, Science.
[69] Philipp Berens,et al. The art of using t-SNE for single-cell transcriptomics , 2018, Nature Communications.
[70] Andrew C. Adey,et al. Cicero Predicts cis-Regulatory DNA Interactions from Single-Cell Chromatin Accessibility Data. , 2018, Molecular cell.
[71] Evan Z. Macosko,et al. Molecular Diversity and Specializations among the Cells of the Adult Mouse Brain , 2018, Cell.
[72] William S. DeWitt,et al. A Single-Cell Atlas of In Vivo Mammalian Chromatin Accessibility , 2018, Cell.
[73] Michael Z. Lin,et al. A Suite of Transgenic Driver and Reporter Mouse Lines with Enhanced Brain-Cell-Type Targeting and Functionality , 2018, Cell.
[74] A. Juavinett,et al. Specialized Subpopulations of Deep-Layer Pyramidal Neurons in the Neocortex: Bridging Cellular Properties to Functional Consequences , 2018, The Journal of Neuroscience.
[75] Lars E. Borm,et al. Molecular Architecture of the Mouse Nervous System , 2018, Cell.
[76] Mingfeng Li,et al. Early emergence of cortical interneuron diversity in the mouse embryo , 2018, Science.
[77] Justin P Sandoval,et al. Robust single-cell DNA methylome profiling with snmC-seq2 , 2018, Nature Communications.
[78] Laleh Haghverdi,et al. Batch effects in single-cell RNA-sequencing data are corrected by matching mutual nearest neighbors , 2018, Nature Biotechnology.
[79] K. Svoboda,et al. Neural mechanisms of movement planning: motor cortex and beyond , 2018, Current Opinion in Neurobiology.
[80] Y. Isomura,et al. In Vivo Spiking Dynamics of Intra- and Extratelencephalic Projection Neurons in Rat Motor Cortex , 2018, Cerebral cortex.
[81] Sara Ballouz,et al. Characterizing the replicability of cell types defined by single cell RNA-sequencing data using MetaNeighbor , 2018, Nature Communications.
[82] D. Dickel,et al. Single-nucleus analysis of accessible chromatin in developing mouse forebrain reveals cell-type-specific transcriptional regulation , 2018, Nature Neuroscience.
[83] Christoph Hafemeister,et al. Developmental diversification of cortical inhibitory interneurons , 2017, Nature.
[84] P. Kharchenko,et al. Integrative single-cell analysis of transcriptional and epigenetic states in the human adult brain , 2017, Nature Biotechnology.
[85] S. Teichmann,et al. Exponential scaling of single-cell RNA-seq in the past decade , 2017, Nature Protocols.
[86] A. Katsarou,et al. Reporting for specific materials, systems and methods , 2018 .
[87] Fabian J Theis,et al. SCANPY: large-scale single-cell gene expression data analysis , 2018, Genome Biology.
[88] Allan R. Jones,et al. Shared and distinct transcriptomic cell types across neocortical areas , 2018, Nature.
[89] Charles R. Gerfen,et al. Distinct descending motor cortex pathways and their roles in movement , 2017, Nature.
[90] Andreas S Tolias,et al. Multimodal profiling of single-cell morphology, electrophysiology, and gene expression using Patch-seq , 2017, Nature Protocols.
[91] Ian R. Wickersham,et al. The BRAIN Initiative Cell Census Consortium: Lessons Learned toward Generating a Comprehensive Brain Cell Atlas , 2017, Neuron.
[92] Marcel Oberlaender,et al. Cell Type-Specific Structural Organization of the Six Layers in Rat Barrel Cortex , 2017, Front. Neuroanat..
[93] Lars E. Borm,et al. The promise of spatial transcriptomics for neuroscience in the era of molecular cell typing , 2017, Science.
[94] Hongkui Zeng,et al. Neuronal cell-type classification: challenges, opportunities and the path forward , 2017, Nature Reviews Neuroscience.
[95] Justin P Sandoval,et al. Single-cell methylomes identify neuronal subtypes and regulatory elements in mammalian cortex , 2017, Science.
[96] Kenneth D Harris,et al. Classes and continua of hippocampal CA1 inhibitory neurons revealed by single-cell transcriptomics , 2017, bioRxiv.
[97] Fabian J Theis,et al. The Human Cell Atlas , 2017, bioRxiv.
[98] Yuchio Yanagawa,et al. Molecular interrogation of hypothalamic organization reveals distinct dopamine neuronal subtypes , 2016, Nature Neuroscience.
[99] A. Regev,et al. Scaling single-cell genomics from phenomenology to mechanism , 2017, Nature.
[100] Brian Zingg,et al. AAV-Mediated Anterograde Transsynaptic Tagging: Mapping Corticocollicular Input-Defined Neural Pathways for Defense Behaviors , 2017, Neuron.
[101] J. D. Macklis,et al. LHX2 Interacts with the NuRD Complex and Regulates Cortical Neuron Subtype Determinants Fezf2 and Sox11 , 2017, The Journal of Neuroscience.
[102] G. Wagner,et al. The origin and evolution of cell types , 2016, Nature Reviews Genetics.
[103] L. Looger,et al. A Designer AAV Variant Permits Efficient Retrograde Access to Projection Neurons , 2016, Neuron.
[104] D. Fitzpatrick,et al. Opportunities and challenges in modeling human brain disorders in transgenic primates , 2016, Nature Neuroscience.
[105] Genevieve Konopka,et al. MEF2C regulates cortical inhibitory and excitatory synapses and behaviors relevant to neurodevelopmental disorders , 2016, eLife.
[106] Jason Tucciarone,et al. Strategies and Tools for Combinatorial Targeting of GABAergic Neurons in Mouse Cerebral Cortex , 2016, Neuron.
[107] Shaoqun Zeng,et al. High-throughput dual-colour precision imaging for brain-wide connectome with cytoarchitectonic landmarks at the cellular level , 2016, Nature Communications.
[108] Nicholas N. Foster,et al. The mouse cortico-striatal projectome , 2016, Nature Neuroscience.
[109] F. Guillemot,et al. Ascl1 Is Required for the Development of Specific Neuronal Subtypes in the Enteric Nervous System , 2016, The Journal of Neuroscience.
[110] Attila Losonczy,et al. Rabies Virus CVS-N2cΔG Strain Enhances Retrograde Synaptic Transfer and Neuronal Viability , 2016, Neuron.
[111] Athanasia G. Palasantza,et al. Electrophysiological, transcriptomic and morphologic profiling of single neurons using Patch-seq , 2015, Nature Biotechnology.
[112] Yuchio Yanagawa,et al. Integration of electrophysiological recordings with single-cell RNA-seq data identifies novel neuronal subtypes , 2015, Nature Biotechnology.
[113] J. Sanes,et al. The types of retinal ganglion cells: current status and implications for neuronal classification. , 2015, Annual review of neuroscience.
[114] F. Ginhoux,et al. Origin of microglia: current concepts and past controversies. , 2015, Cold Spring Harbor perspectives in biology.
[115] Terrence J. Sejnowski,et al. Epigenomic Signatures of Neuronal Diversity in the Mammalian Brain , 2015, Neuron.
[116] Andrew C. Adey,et al. Multiplex single-cell profiling of chromatin accessibility by combinatorial cellular indexing , 2015, Science.
[117] X. Zhuang,et al. Spatially resolved, highly multiplexed RNA profiling in single cells , 2015, Science.
[118] M. Delignette-Muller,et al. fitdistrplus: An R Package for Fitting Distributions , 2015 .
[119] G. Shepherd,et al. The neocortical circuit: themes and variations , 2015, Nature Neuroscience.
[120] Elizabeth J. Robertson,et al. Cortical and Clonal Contribution of Tbr2 Expressing Progenitors in the Developing Mouse Brain , 2014, Cerebral cortex.
[121] Sylvia Richardson,et al. PReMiuM: An R Package for Profile Regression Mixture Models Using Dirichlet Processes. , 2013, Journal of statistical software.
[122] Kenneth D Harris,et al. A genuine layer 4 in motor cortex with prototypical synaptic circuit connectivity , 2014, eLife.
[123] W. Huber,et al. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2 , 2014, Genome Biology.
[124] H. Barbas,et al. Area 4 has layer IV in adult primates , 2014, The European journal of neuroscience.
[125] Allan R. Jones,et al. A mesoscale connectome of the mouse brain , 2014, Nature.
[126] Arthur W. Toga,et al. Neural Networks of the Mouse Neocortex , 2014, Cell.
[127] Multiple conserved regulatory domains promote Fezf2 expression in the developing cerebral cortex , 2014, Neural Development.
[128] C. Gerfen,et al. GENSAT BAC Cre-Recombinase Driver Lines to Study the Functional Organization of Cerebral Cortical and Basal Ganglia Circuits , 2013, Neuron.
[129] J. D. Macklis,et al. Molecular logic of neocortical projection neuron specification, development and diversity , 2013, Nature Reviews Neuroscience.
[130] E. Shapiro,et al. Single-cell sequencing-based technologies will revolutionize whole-organism science , 2013, Nature Reviews Genetics.
[131] Hongkui Zeng,et al. Genetic approaches to neural circuits in the mouse. , 2013, Annual review of neuroscience.
[132] Shaoqun Zeng,et al. Continuously tracing brain-wide long-distance axonal projections in mice at a one-micron voxel resolution , 2013, NeuroImage.
[133] S. Bouyain,et al. The protein tyrosine phosphatases PTPRZ and PTPRG bind to distinct members of the contactin family of neural recognition molecules , 2010, Proceedings of the National Academy of Sciences.
[134] Timothy L. Bailey,et al. Motif Enrichment Analysis: a unified framework and an evaluation on ChIP data , 2010, BMC Bioinformatics.
[135] J. Price. :Allen Reference Atlas: A Digital Color Brain Atlas of the C57BL/6J Male Mouse , 2008 .
[136] Clifford A. Meyer,et al. Model-based Analysis of ChIP-Seq (MACS) , 2008, Genome Biology.
[137] E. P. Gardner,et al. Petilla terminology: nomenclature of features of GABAergic interneurons of the cerebral cortex , 2008, Nature Reviews Neuroscience.
[138] R. Lemon. Descending pathways in motor control. , 2008, Annual review of neuroscience.
[139] Clive K. Catchpole,et al. THEMES AND VARIATIONS , 2008 .
[140] Hong Wei Dong,et al. Allen reference atlas : a digital color brain atlas of the C57Black/6J male mouse , 2008 .
[141] Charles Rattray,et al. Themes and variations , 2007, Architectural Research Quarterly.
[142] P. Arlotta,et al. Neuronal subtype specification in the cerebral cortex , 2007, Nature Reviews Neuroscience.
[143] Ian R. Wickersham,et al. Monosynaptic Restriction of Transsynaptic Tracing from Single, Genetically Targeted Neurons , 2007, Neuron.
[144] G. Miyoshi,et al. Ascl1 defines sequentially generated lineage-restricted neuronal and oligodendrocyte precursor cells in the spinal cord , 2007, Development.
[145] C. Englund,et al. Pax6, Tbr2, and Tbr1 Are Expressed Sequentially by Radial Glia, Intermediate Progenitor Cells, and Postmitotic Neurons in Developing Neocortex , 2005, The Journal of Neuroscience.
[146] P. Somogyi,et al. Defined types of cortical interneurone structure space and spike timing in the hippocampus , 2005, The Journal of physiology.
[147] Patrik O. Hoyer,et al. Non-negative Matrix Factorization with Sparseness Constraints , 2004, J. Mach. Learn. Res..
[148] G. Cooper. The Origin and Evolution of Cells , 2000 .
[149] 城所 良明,et al. The Salk Institute for Biological Studies(話題) , 1975 .
[150] A. Scheibel,et al. Basilar dendrite bundles of giant pyramidal cells. , 1974, Experimental neurology.
[151] Ramón y Cajal,et al. Histologie du système nerveux de l'homme & des vertébrés , 1909 .
[152] Waldeyer,et al. Ueber einige neuere Forschungen im Gebiete der Anatomie des Centralnervensystems , 1892 .
[153] W. Waldeyer,et al. Ueber einige neuere Forschungen im Gebiete der Anatomie des Centralnervensystems1) , 1891 .