A multimodal cell census and atlas of the mammalian primary motor cortex

Satrajit S. Ghosh | Nicholas N. Foster | Evan Z. Macosko | A. S. Booeshaghi | Ricky S. Adkins | Joshua D. Welch | Timothy L. Tickle | Trygve E Bakken | Staci A. Sorensen | Julie A. Harris | Karla E. Hirokawa | Joshua T. Hatfield | Fenna M. Krienen | Mohammad S. Rashid | S. Linnarsson | A. Regev | L. Pachter | E. Callaway | G. Feng | S. Mccarroll | Philipp Berens | C. Cadwell | A. Tolias | B. Helba | S. Dudoit | Quanxin Wang | T. Nguyen | Wayne Wakeman | Hanchuan Peng | M. Hawrylycz | Hongkui Zeng | Bosiljka Tasic | Zizhen Yao | Kimberly A. Smith | Darren Bertagnolli | J. Goldy | Olivia Fong | K. Lathia | Christine Rimorin | Michael Tieu | Rachael Larsen | Tamara Casper | Matthew Kroll | N. Dee | S. Sunkin | T. Daigle | E. Lein | Xiaolong Jiang | Greg Hood | R. Sandberg | Z. J. Huang | Hong-wei Dong | Lydia Ng | C. Thompson | P. Mitra | Stephan Fischer | B. Lim | J. Gee | E. Purdom | J. Ngai | H. Bravo | M. Martone | G. Ascoli | E. Macosko | Melissa Goldman | Anup Mahurkar | Arun Narasimhan | P. Osten | J. Mizrachi | Rebecca K. Chance | X. Zhuang | B. Ren | P. Kharchenko | Xin Jin | Matthew Jacobs | Nikolaos Barkas | G. Horwitz | K. Konwar | J. Ecker | J. Crabtree | Kelly Street | D. Risso | Nongluk Plongthongkum | Kun Zhang | C. Luo | Joseph R. Nery | E. Mukamel | Jayaram Kancherla | A. Ko | A. Bandrowski | D. Diep | J. Ting | Zhuzhu Zhang | Q. Luo | H. Gong | Y. Halchenko | J. Chun | S. Ding | R. Dalley | Huaming Chen | Joshua Orvis | Stephen W. Eichhorn | Helen S. Bateup | Valentine Svensson | C. Vanderburg | H. Creasy | M. Giglio | Victor Felix | Owen R. White | D. Kobak | Liya Ding | J. Gillis | Lei Qu | Phil Lesnar | B. Lake | L. Hartmanis | Angeline C. Rivkin | Jingtian Zhou | J. Lucero | Rosa G. Castanon | A. Pinto-Duarte | Conor Fitzpatrick | Carolyn O’Connor | M. Behrens | S. Preissl | Rongxin Fang | Vasilis Ntranos | K. Van den Berge | Zhao Feng | Anan Li | Xiangning Li | Tao Jiang | Miao Ren | Jing Yuan | Ian Bowman | Nikolas L. Jorstad | C. Keene | B. Dichter | R. Hertzano | E. D. Vaishnav | Lin Gou | P. Nicovich | J. Smith | Zongcai Ruan | C. Colantuoni | S. Ament | M. Crow | Olivier B. Poirion | Brian R. Herb | R. Hodge | Saroja Somasundaram | Xiaomeng Hou | Y. Li | Elanine Miranda | Z. H. Tan | Jim Berg | B. Kalmbach | Kirsten Crichton | Florence D. D'Orazi | D. McMillen | Stephanie Mok | J. Sulc | A. Torkelson | Herman Tung | Hanqing Liu | Fangming Xie | Andrew I. Aldridge | Anna Bartlett | T. Biancalani | Elizabeth L. Dougherty | Qiwen Hu | Naeem M. Nadaf | Sheng-Yong Niu | Julia K. Osteen | Thanh Pham | Cindy T. J. van Velthoven | Xinxin Wang | Lijuan Hu | Meng Zhang | Brian Zingg | A. Yanny | Ethan J. Armand | K. Siletti | D. Hockemeyer | Houri Hintiryan | X. W. Yang | Bingxing Huo | E. Shen | R. Palaniswamy | Scott F. Owen | Carrie McCracken | F. Scala | Yves Bernaerts | S. Laturnus | J. Castro | K. Matho | Peng Wang | M. Veldman | M. Naeemi | Yuanyuan Li | Tanya L. Daigle | Kuo-Fen Lee | M. Grauer | Nora M. Reed | Christine S. Liu | W. Romanow | Robert Carter | D. Stafford | Carter R. Palmer | Jared B. Smith | Shalaka Mulherkar | R. Muñoz-Castañeda | Xueyan Jia | Tom Gillespie | M. Nunn | Mike Schor | Dustin Olley | Matteo Bernabucci | Wei-ping Tian | Lara Boggeman | Shona Allen | Xu An | Samik Banerjee | Benjamin Carlin | Apaala Chatterjee | Kylee Degatano | Bertha Dominguez | Weixiu Dong | William Galbavy | Tony Ito-Cole | Shengdian Jiang | Kathleen Kelly | F. Khajouei | Gukhan Kim | Daniel J. Kramer | Xiuli Kuang | H. Kuo | Angus Y. Lee | Cheng-Ta Lee | Xu Li | Yaoyao Li | Lijuan Liu | Paula Assakura Miyazaki | Lance Nickel | Yan Pang | A. Ropelewski | Hector Roux de Bézieux | Steven Savoia | Yuanyuan Song | Pengcheng Tan | Minh Vu | Yimin Wang | Yun Wang | Elora W. Williams | Peng Xie | Feng Xiong | L. Yin | Yang Yu | Sujun Zhao | Xuan Zhao | A. Li | A. Mahurkar | O. White | P. A. Miyazaki | Naeem M Nadaf | Qingming Luo | R. Castanon | S. Sorensen | J. Berg | Farzaneh Khajouei | David A. Stafford | H. C. Bravo | Tommaso Biancalani | Brian Helba | Rodrigo Muñoz-Castañeda

[1]  Staci A. Sorensen,et al.  Morphological diversity of single neurons in molecularly defined cell types , 2021, Nature.

[2]  Brian R. Lee,et al.  Human neocortical expansion involves glutamatergic neuron diversification , 2021, Nature.

[3]  Julie A. Harris,et al.  Genetic dissection of the glutamatergic neuron system in cerebral cortex , 2021, Nature.

[4]  Evan Z. Macosko,et al.  Comparative cellular analysis of motor cortex in human, marmoset and mouse , 2021, Nature.

[5]  Evan Z. Macosko,et al.  A transcriptomic and epigenomic cell atlas of the mouse primary motor cortex , 2021, Nature.

[6]  Hongkui Zeng,et al.  Spatially resolved cell atlas of the mouse primary motor cortex by MERFISH , 2021, Nature.

[7]  Evan Z. Macosko,et al.  Peer Review File Manuscript Title: A transcriptomic atlas of mouse cerebellar cortex reveals novel cell types Editorial Notes: Reviewer Comments & Author Rebuttals , 2020 .

[8]  Garreck H. Lenz,et al.  Enhancer viruses for combinatorial cell-subclass-specific labeling , 2021, Neuron.

[9]  H. Gong,et al.  High-definition imaging using line-illumination modulation microscopy , 2021, Nature Methods.

[10]  B. Ren,et al.  Comprehensive analysis of single cell ATAC-seq data with SnapATAC , 2021, Nature Communications.

[11]  E. Mukamel,et al.  Single-Cell Sequencing of Brain Cell Transcriptomes and Epigenomes , 2021, Neuron.

[12]  Brian R. Long,et al.  Spatially resolved transcriptomics in neuroscience , 2021, Nature Methods.

[13]  X. Zhuang Spatially resolved single-cell genomics and transcriptomics by imaging , 2021, Nature Methods.

[14]  Hongkui Zeng,et al.  A taxonomy of transcriptomic cell types across the isocortex and hippocampal formation , 2020, Cell.

[15]  Philipp Berens,et al.  Phenotypic variation of transcriptomic cell types in mouse motor cortex , 2020, Nature.

[16]  Brian R. Lee,et al.  Integrated Morphoelectric and Transcriptomic Classification of Cortical GABAergic Cells , 2020, Cell.

[17]  Liya Ding,et al.  Cellular anatomy of the mouse primary motor cortex , 2020, Nature.

[18]  Tom P. Franken,et al.  Viral manipulation of functionally distinct interneurons in mice, non-human primates and humans , 2020, Nature Neuroscience.

[19]  Hongkui Zeng,et al.  Brainwide Genetic Sparse Cell Labeling to Illuminate the Morphology of Neurons and Glia with Cre-Dependent MORF Mice , 2020, Neuron.

[20]  Evan Z. Macosko,et al.  Molecular Logic of Cellular Diversification in the Mammalian Cerebral Cortex , 2020, bioRxiv.

[21]  Hongkui Zeng,et al.  Molecular, spatial and projection diversity of neurons in primary motor cortex revealed by in situ single-cell transcriptomics , 2020, bioRxiv.

[22]  Kyle J. Gaulton,et al.  An atlas of gene regulatory elements in adult mouse cerebrum , 2020, Nature.

[23]  L. Ng,et al.  The Allen Mouse Brain Common Coordinate Framework: A 3D Reference Atlas , 2020, Cell.

[24]  Jesse R. Dixon,et al.  DNA methylation atlas of the mouse brain at single-cell resolution , 2020, Nature.

[25]  Nicholas N. Foster,et al.  An open access mouse brain flatmap and upgraded rat and human brain flatmaps based on current reference atlases , 2020, The Journal of comparative neurology.

[26]  Partha P. Mitra,et al.  Genetic dissection of glutamatergic neuron subpopulations and developmental trajectories in the cerebral cortex , 2020, bioRxiv.

[27]  Hehuang Xie,et al.  Epigenetic regulation of neuronal cell specification inferred with single cell “Omics” data , 2020, Computational and structural biotechnology journal.

[28]  Mohammad S. Rashid,et al.  Epigenomic diversity of cortical projection neurons in the mouse brain , 2020, Nature.

[29]  Brian R. Lee,et al.  Human cortical expansion involves diversification and specialization of supragranular intratelencephalic-projecting neurons , 2020, bioRxiv.

[30]  Christof Koch,et al.  Evolution of cellular diversity in primary motor cortex of human, marmoset monkey, and mouse , 2020, bioRxiv.

[31]  Aviv Regev,et al.  A transcriptomic atlas of the mouse cerebellum reveals regional specializations and novel cell types , 2020, bioRxiv.

[32]  Evan Z. Macosko,et al.  An integrated transcriptomic and epigenomic atlas of mouse primary motor cortex cell types , 2020, bioRxiv.

[33]  F. Claudi,et al.  Brainrender: a python-based software for visualizing anatomically registered data , 2020, bioRxiv.

[34]  Hongkui Zeng,et al.  Phenotypic variation within and across transcriptomic cell types in mouse motor cortex , 2020, bioRxiv.

[35]  Brian R. Lee,et al.  Toward an integrated classification of neuronal cell types: morphoelectric and transcriptomic characterization of individual GABAergic cortical neurons , 2020, bioRxiv.

[36]  S. Quake,et al.  Continuous and Discrete Neuron Types of the Adult Murine Striatum , 2019, Neuron.

[37]  Phillip A. Richmond,et al.  JASPAR 2020: update of the open-access database of transcription factor binding profiles , 2019, Nucleic Acids Res..

[38]  Concha Bielza,et al.  A community-based transcriptomics classification and nomenclature of neocortical cell types , 2019, Nature Neuroscience.

[39]  Jesse R. Dixon,et al.  Single nucleus multi-omics links human cortical cell regulatory genome diversity to disease risk variants , 2019, bioRxiv.

[40]  Yun Wang,et al.  Hierarchical organization of cortical and thalamic connectivity , 2019, Nature.

[41]  David J. Anderson,et al.  Multimodal Analysis of Cell Types in a Hypothalamic Node Controlling Social Behavior , 2019, Cell.

[42]  Kun Zhang,et al.  High-throughput sequencing of the transcriptome and chromatin accessibility in the same cell , 2019, Nature Biotechnology.

[43]  Christopher P. Tzeng,et al.  A scalable platform for the development of cell-type-specific viral drivers , 2019, eLife.

[44]  Lior Pachter,et al.  A curated database reveals trends in single-cell transcriptomics , 2019, bioRxiv.

[45]  Allan R. Jones,et al.  Conserved cell types with divergent features in human versus mouse cortex , 2019, Nature.

[46]  David Kulp,et al.  Innovations in Primate Interneuron Repertoire , 2019, bioRxiv.

[47]  Martin J. Aryee,et al.  Droplet-based combinatorial indexing for massive-scale single-cell chromatin accessibility , 2019, Nature Biotechnology.

[48]  Shaoqun Zeng,et al.  Brain-wide single neuron reconstruction reveals morphological diversity in molecularly defined striatal, thalamic, cortical and claustral neuron types , 2019, bioRxiv.

[49]  Z Josh Huang,et al.  The diversity of GABAergic neurons and neural communication elements , 2019, Nature Reviews Neuroscience.

[50]  Evan Z. Macosko,et al.  Single-Cell Multi-omic Integration Compares and Contrasts Features of Brain Cell Identity , 2019, Cell.

[51]  Paul J. Hoffman,et al.  Comprehensive Integration of Single-Cell Data , 2018, Cell.

[52]  J. Ngai,et al.  Perspectives on defining cell types in the brain , 2019, Current Opinion in Neurobiology.

[53]  Bonnie Berger,et al.  Efficient integration of heterogeneous single-cell transcriptomes using Scanorama , 2019, Nature Biotechnology.

[54]  Kai Zhang,et al.  SnapATAC: A Comprehensive Analysis Package for Single Cell ATAC-seq , 2019, bioRxiv.

[55]  B. Ren,et al.  Fast and Accurate Clustering of Single Cell Epigenomes Reveals Cis-Regulatory Elements in Rare Cell Types , 2019 .

[56]  Andrew C. Adey,et al.  The accessible chromatin landscape of the murine hippocampus at single-cell resolution , 2019, Genome research.

[57]  Michael L. Hines,et al.  Neuron Names: A Gene- and Property-Based Name Format, With Special Reference to Cortical Neurons , 2019, Front. Neuroanat..

[58]  M. Mortrud,et al.  Functional enhancer elements drive subclass-selective expression from mouse to primate neocortex , 2019, bioRxiv.

[59]  Trygve E Bakken,et al.  Epigenetic landscape and AAV targeting of human neocortical cell classes , 2019 .

[60]  Michael N. Economo,et al.  Reconstruction of 1,000 Projection Neurons Reveals New Cell Types and Organization of Long-Range Connectivity in the Mouse Brain , 2019, Cell.

[61]  Garreck H. Lenz,et al.  Enhancer viruses and a transgenic platform for combinatorial cell subclass-specific labeling , 2019 .

[62]  Garreck H. Lenz,et al.  Prospective, brain-wide labeling of neuronal subclasses with enhancer-driven AAVs , 2019, bioRxiv.

[63]  Vincent A. Traag,et al.  From Louvain to Leiden: guaranteeing well-connected communities , 2018, Scientific Reports.

[64]  Xiaoyin Chen,et al.  High-Throughput Mapping of Long-Range Neuronal Projection Using In Situ Sequencing , 2018, Cell.

[65]  S. Tole,et al.  Lhx2, an evolutionarily conserved, multifunctional regulator of forebrain development , 2019, Brain Research.

[66]  Nimrod D. Rubinstein,et al.  Molecular, spatial, and functional single-cell profiling of the hypothalamic preoptic region , 2018, Science.

[67]  Mauro A. A. Castro,et al.  The chromatin accessibility landscape of primary human cancers , 2018, Science.

[68]  Steve Mao,et al.  Cancer chromatin accessibility landscape , 2018, Science.

[69]  Philipp Berens,et al.  The art of using t-SNE for single-cell transcriptomics , 2018, Nature Communications.

[70]  Andrew C. Adey,et al.  Cicero Predicts cis-Regulatory DNA Interactions from Single-Cell Chromatin Accessibility Data. , 2018, Molecular cell.

[71]  Evan Z. Macosko,et al.  Molecular Diversity and Specializations among the Cells of the Adult Mouse Brain , 2018, Cell.

[72]  William S. DeWitt,et al.  A Single-Cell Atlas of In Vivo Mammalian Chromatin Accessibility , 2018, Cell.

[73]  Michael Z. Lin,et al.  A Suite of Transgenic Driver and Reporter Mouse Lines with Enhanced Brain-Cell-Type Targeting and Functionality , 2018, Cell.

[74]  A. Juavinett,et al.  Specialized Subpopulations of Deep-Layer Pyramidal Neurons in the Neocortex: Bridging Cellular Properties to Functional Consequences , 2018, The Journal of Neuroscience.

[75]  Lars E. Borm,et al.  Molecular Architecture of the Mouse Nervous System , 2018, Cell.

[76]  Mingfeng Li,et al.  Early emergence of cortical interneuron diversity in the mouse embryo , 2018, Science.

[77]  Justin P Sandoval,et al.  Robust single-cell DNA methylome profiling with snmC-seq2 , 2018, Nature Communications.

[78]  Laleh Haghverdi,et al.  Batch effects in single-cell RNA-sequencing data are corrected by matching mutual nearest neighbors , 2018, Nature Biotechnology.

[79]  K. Svoboda,et al.  Neural mechanisms of movement planning: motor cortex and beyond , 2018, Current Opinion in Neurobiology.

[80]  Y. Isomura,et al.  In Vivo Spiking Dynamics of Intra- and Extratelencephalic Projection Neurons in Rat Motor Cortex , 2018, Cerebral cortex.

[81]  Sara Ballouz,et al.  Characterizing the replicability of cell types defined by single cell RNA-sequencing data using MetaNeighbor , 2018, Nature Communications.

[82]  D. Dickel,et al.  Single-nucleus analysis of accessible chromatin in developing mouse forebrain reveals cell-type-specific transcriptional regulation , 2018, Nature Neuroscience.

[83]  Christoph Hafemeister,et al.  Developmental diversification of cortical inhibitory interneurons , 2017, Nature.

[84]  P. Kharchenko,et al.  Integrative single-cell analysis of transcriptional and epigenetic states in the human adult brain , 2017, Nature Biotechnology.

[85]  S. Teichmann,et al.  Exponential scaling of single-cell RNA-seq in the past decade , 2017, Nature Protocols.

[86]  A. Katsarou,et al.  Reporting for specific materials, systems and methods , 2018 .

[87]  Fabian J Theis,et al.  SCANPY: large-scale single-cell gene expression data analysis , 2018, Genome Biology.

[88]  Allan R. Jones,et al.  Shared and distinct transcriptomic cell types across neocortical areas , 2018, Nature.

[89]  Charles R. Gerfen,et al.  Distinct descending motor cortex pathways and their roles in movement , 2017, Nature.

[90]  Andreas S Tolias,et al.  Multimodal profiling of single-cell morphology, electrophysiology, and gene expression using Patch-seq , 2017, Nature Protocols.

[91]  Ian R. Wickersham,et al.  The BRAIN Initiative Cell Census Consortium: Lessons Learned toward Generating a Comprehensive Brain Cell Atlas , 2017, Neuron.

[92]  Marcel Oberlaender,et al.  Cell Type-Specific Structural Organization of the Six Layers in Rat Barrel Cortex , 2017, Front. Neuroanat..

[93]  Lars E. Borm,et al.  The promise of spatial transcriptomics for neuroscience in the era of molecular cell typing , 2017, Science.

[94]  Hongkui Zeng,et al.  Neuronal cell-type classification: challenges, opportunities and the path forward , 2017, Nature Reviews Neuroscience.

[95]  Justin P Sandoval,et al.  Single-cell methylomes identify neuronal subtypes and regulatory elements in mammalian cortex , 2017, Science.

[96]  Kenneth D Harris,et al.  Classes and continua of hippocampal CA1 inhibitory neurons revealed by single-cell transcriptomics , 2017, bioRxiv.

[97]  Fabian J Theis,et al.  The Human Cell Atlas , 2017, bioRxiv.

[98]  Yuchio Yanagawa,et al.  Molecular interrogation of hypothalamic organization reveals distinct dopamine neuronal subtypes , 2016, Nature Neuroscience.

[99]  A. Regev,et al.  Scaling single-cell genomics from phenomenology to mechanism , 2017, Nature.

[100]  Brian Zingg,et al.  AAV-Mediated Anterograde Transsynaptic Tagging: Mapping Corticocollicular Input-Defined Neural Pathways for Defense Behaviors , 2017, Neuron.

[101]  J. D. Macklis,et al.  LHX2 Interacts with the NuRD Complex and Regulates Cortical Neuron Subtype Determinants Fezf2 and Sox11 , 2017, The Journal of Neuroscience.

[102]  G. Wagner,et al.  The origin and evolution of cell types , 2016, Nature Reviews Genetics.

[103]  L. Looger,et al.  A Designer AAV Variant Permits Efficient Retrograde Access to Projection Neurons , 2016, Neuron.

[104]  D. Fitzpatrick,et al.  Opportunities and challenges in modeling human brain disorders in transgenic primates , 2016, Nature Neuroscience.

[105]  Genevieve Konopka,et al.  MEF2C regulates cortical inhibitory and excitatory synapses and behaviors relevant to neurodevelopmental disorders , 2016, eLife.

[106]  Jason Tucciarone,et al.  Strategies and Tools for Combinatorial Targeting of GABAergic Neurons in Mouse Cerebral Cortex , 2016, Neuron.

[107]  Shaoqun Zeng,et al.  High-throughput dual-colour precision imaging for brain-wide connectome with cytoarchitectonic landmarks at the cellular level , 2016, Nature Communications.

[108]  Nicholas N. Foster,et al.  The mouse cortico-striatal projectome , 2016, Nature Neuroscience.

[109]  F. Guillemot,et al.  Ascl1 Is Required for the Development of Specific Neuronal Subtypes in the Enteric Nervous System , 2016, The Journal of Neuroscience.

[110]  Attila Losonczy,et al.  Rabies Virus CVS-N2cΔG Strain Enhances Retrograde Synaptic Transfer and Neuronal Viability , 2016, Neuron.

[111]  Athanasia G. Palasantza,et al.  Electrophysiological, transcriptomic and morphologic profiling of single neurons using Patch-seq , 2015, Nature Biotechnology.

[112]  Yuchio Yanagawa,et al.  Integration of electrophysiological recordings with single-cell RNA-seq data identifies novel neuronal subtypes , 2015, Nature Biotechnology.

[113]  J. Sanes,et al.  The types of retinal ganglion cells: current status and implications for neuronal classification. , 2015, Annual review of neuroscience.

[114]  F. Ginhoux,et al.  Origin of microglia: current concepts and past controversies. , 2015, Cold Spring Harbor perspectives in biology.

[115]  Terrence J. Sejnowski,et al.  Epigenomic Signatures of Neuronal Diversity in the Mammalian Brain , 2015, Neuron.

[116]  Andrew C. Adey,et al.  Multiplex single-cell profiling of chromatin accessibility by combinatorial cellular indexing , 2015, Science.

[117]  X. Zhuang,et al.  Spatially resolved, highly multiplexed RNA profiling in single cells , 2015, Science.

[118]  M. Delignette-Muller,et al.  fitdistrplus: An R Package for Fitting Distributions , 2015 .

[119]  G. Shepherd,et al.  The neocortical circuit: themes and variations , 2015, Nature Neuroscience.

[120]  Elizabeth J. Robertson,et al.  Cortical and Clonal Contribution of Tbr2 Expressing Progenitors in the Developing Mouse Brain , 2014, Cerebral cortex.

[121]  Sylvia Richardson,et al.  PReMiuM: An R Package for Profile Regression Mixture Models Using Dirichlet Processes. , 2013, Journal of statistical software.

[122]  Kenneth D Harris,et al.  A genuine layer 4 in motor cortex with prototypical synaptic circuit connectivity , 2014, eLife.

[123]  W. Huber,et al.  Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2 , 2014, Genome Biology.

[124]  H. Barbas,et al.  Area 4 has layer IV in adult primates , 2014, The European journal of neuroscience.

[125]  Allan R. Jones,et al.  A mesoscale connectome of the mouse brain , 2014, Nature.

[126]  Arthur W. Toga,et al.  Neural Networks of the Mouse Neocortex , 2014, Cell.

[127]  Multiple conserved regulatory domains promote Fezf2 expression in the developing cerebral cortex , 2014, Neural Development.

[128]  C. Gerfen,et al.  GENSAT BAC Cre-Recombinase Driver Lines to Study the Functional Organization of Cerebral Cortical and Basal Ganglia Circuits , 2013, Neuron.

[129]  J. D. Macklis,et al.  Molecular logic of neocortical projection neuron specification, development and diversity , 2013, Nature Reviews Neuroscience.

[130]  E. Shapiro,et al.  Single-cell sequencing-based technologies will revolutionize whole-organism science , 2013, Nature Reviews Genetics.

[131]  Hongkui Zeng,et al.  Genetic approaches to neural circuits in the mouse. , 2013, Annual review of neuroscience.

[132]  Shaoqun Zeng,et al.  Continuously tracing brain-wide long-distance axonal projections in mice at a one-micron voxel resolution , 2013, NeuroImage.

[133]  S. Bouyain,et al.  The protein tyrosine phosphatases PTPRZ and PTPRG bind to distinct members of the contactin family of neural recognition molecules , 2010, Proceedings of the National Academy of Sciences.

[134]  Timothy L. Bailey,et al.  Motif Enrichment Analysis: a unified framework and an evaluation on ChIP data , 2010, BMC Bioinformatics.

[135]  J. Price :Allen Reference Atlas: A Digital Color Brain Atlas of the C57BL/6J Male Mouse , 2008 .

[136]  Clifford A. Meyer,et al.  Model-based Analysis of ChIP-Seq (MACS) , 2008, Genome Biology.

[137]  E. P. Gardner,et al.  Petilla terminology: nomenclature of features of GABAergic interneurons of the cerebral cortex , 2008, Nature Reviews Neuroscience.

[138]  R. Lemon Descending pathways in motor control. , 2008, Annual review of neuroscience.

[139]  Clive K. Catchpole,et al.  THEMES AND VARIATIONS , 2008 .

[140]  Hong Wei Dong,et al.  Allen reference atlas : a digital color brain atlas of the C57Black/6J male mouse , 2008 .

[141]  Charles Rattray,et al.  Themes and variations , 2007, Architectural Research Quarterly.

[142]  P. Arlotta,et al.  Neuronal subtype specification in the cerebral cortex , 2007, Nature Reviews Neuroscience.

[143]  Ian R. Wickersham,et al.  Monosynaptic Restriction of Transsynaptic Tracing from Single, Genetically Targeted Neurons , 2007, Neuron.

[144]  G. Miyoshi,et al.  Ascl1 defines sequentially generated lineage-restricted neuronal and oligodendrocyte precursor cells in the spinal cord , 2007, Development.

[145]  C. Englund,et al.  Pax6, Tbr2, and Tbr1 Are Expressed Sequentially by Radial Glia, Intermediate Progenitor Cells, and Postmitotic Neurons in Developing Neocortex , 2005, The Journal of Neuroscience.

[146]  P. Somogyi,et al.  Defined types of cortical interneurone structure space and spike timing in the hippocampus , 2005, The Journal of physiology.

[147]  Patrik O. Hoyer,et al.  Non-negative Matrix Factorization with Sparseness Constraints , 2004, J. Mach. Learn. Res..

[148]  G. Cooper The Origin and Evolution of Cells , 2000 .

[149]  城所 良明,et al.  The Salk Institute for Biological Studies(話題) , 1975 .

[150]  A. Scheibel,et al.  Basilar dendrite bundles of giant pyramidal cells. , 1974, Experimental neurology.

[151]  Ramón y Cajal,et al.  Histologie du système nerveux de l'homme & des vertébrés , 1909 .

[152]  Waldeyer,et al.  Ueber einige neuere Forschungen im Gebiete der Anatomie des Centralnervensystems , 1892 .

[153]  W. Waldeyer,et al.  Ueber einige neuere Forschungen im Gebiete der Anatomie des Centralnervensystems1) , 1891 .