Shoot apical meristem: A sustainable explant for genetic transformation of cereal crops

SummaryImmature zygotic embryo has been the widely used explant source to develop embryogenic callus lines, cell suspensions and protoplasts for transformation of cereal crops including maize, wheat, rice, oat, barley, sorghum, and millet. However, the lack of competence of immature embryos in certain elite lines is still a barrier to rontine production of transgenic cereal crops in certain commercial cultivars. In addition, a great deal of effort is required to produce immature embryos, manipulate cultures, of immature embryos or their cell suspensions, and cryoperserve cultures for further use. In addition, undifferentiated cells may have reduced regenerability after a few months, of in vitro culture. Alternative explants and regeneration systems for efficient transformation of cereal crops are needed to avoid or reduce the above limitations. During the past decade, scientists have successfully manipulated the shoot apical meristerms from seedlings of maize oat, sorghum, millet, wheat, and barley in an effort to develop a less genetype-dependent and efficient cereal regneration system that can be maintained in vitro for long pertiods of time without the need for cryopreservation. Furthermore, apical mesistem regeneration systems were used to stably transform maize, wheat, rice, oat, barley, sorghum, and millet.

[1]  E. Irish Additional vegetative growth in maize reflects expansion of fates in preexisting tissue, not additional divisions by apical initials. , 1998, Developmental biology.

[2]  G. Daggard,et al.  Agrobacterium tumefaciens-mediated transformation of wheat using a superbinary vector and a polyamine-supplemented regeneration medium , 2002, Plant Cell Reports.

[3]  M. Jardinaud,et al.  Optimisation of DNA transfer and transientβ-glucuronidase expression in electroporated maize (Zea mays L.) microspores , 2005, Plant Cell Reports.

[4]  D. Baulcombe,et al.  A wheat alpha-Amy2 promoter is regulated by gibberellin in transformed oat aleurone protoplasts. , 1989, The EMBO journal.

[5]  D. Somers,et al.  Fertile, Transgenic Oat Plants , 1992, Bio/Technology.

[6]  Z. Rengel,et al.  Somatic embryogenesis and plant regeneration from seedling tissues of Hordeum vulgare L. , 1986 .

[7]  J. Schulze,et al.  Fertile transgenic barley of different cultivars obtained by adjustment of bombardment conditions to tissue response , 1996 .

[8]  J. Medford,et al.  Vegetative Apical Meristems. , 1992, The Plant cell.

[9]  Q. Yao,et al.  Biolistic transformation of haploid isolated microspores of barley (Hordeum vulgare L.). , 1997, Genome.

[10]  C. Sparks,et al.  Factors influencing successful Agrobacterium-mediated genetic transformation of wheat , 2003, Plant Cell Reports.

[11]  V. Marfâ,et al.  Regeneration and genetic transformation of Spanish rice cultivars using mature embryos , 2000, Euphytica.

[12]  P. Song,et al.  Quantitative real-time PCR as a screening tool for estimating transgene copy number in WHISKERS™-derived transgenic maize , 2002, Plant Cell Reports.

[13]  K. K. Kumar Agrobacterium-Mediated Transformation Of Indica Rice , 2000 .

[14]  P. Lemaux,et al.  Transformation of Maize Cells and Regeneration of Fertile Transgenic Plants. , 1990, The Plant cell.

[15]  G. Scoles,et al.  Production of multiple shoots from thidiazuron-treated mature embryos and leaf-base/apical meristems of barley (Hordeum vulgare) , 2003, Plant Cell, Tissue and Organ Culture.

[16]  R. Deltour,et al.  Transgenic Pearl Millet ( Pennisetum glaucum ) , 2000 .

[17]  P. Lemaux,et al.  Transformation of recalcitrant maize elite inbreds using in vitro shoot meristematic cultures induced from germinated seedlings , 2002, Plant Cell Reports.

[18]  Shibo Zhang,et al.  Expression of CDC2Zm and KNOTTED1 during in-vitro axillary shoot meristem proliferation and adventitious shoot meristem formation in maize (Zea mays L.) and barley (Hordeum vulgare L.) , 1998, Planta.

[19]  S. Zhang,et al.  The Competence of Maize Shoot Meristems for Integrative Transformation and Inherited Expression of Transgenes , 1996, Plant physiology.

[20]  C. L. Armstrong,et al.  Production of transgenic maize plants and progeny by bombardment of hi-II immature embryos , 1996, In Vitro Cellular & Developmental Biology - Plant.

[21]  R. Chibbar,et al.  Recovery and characterization of transgenic plants from two spring wheat cultivars with low embryogenesis efficiencies by the bombardment of isolated scutella , 2007, In Vitro Cellular & Developmental Biology - Plant.

[22]  D. Baulcombe,et al.  A wheat α‐Amy2 promoter is regulated by gibberellin in transformed oat aleurone protoplasts , 1989 .

[23]  G. Neuhaus,et al.  T‐DNA transfer in meristematic cells of maize provided with intracellular Agrobacterium , 1996 .

[24]  I. Godwin,et al.  Transgenic Grain Sorghum (Sorghum bicolor) Plants via Agrobacterium , 1994 .

[25]  C. Sparks,et al.  Factors influencing Agrobacterium-mediated transient expression of uidA in wheat inflorescence tissue. , 2001, Journal of experimental botany.

[26]  J. Snape,et al.  Luciferase as a reporter gene for transformation studies in rice (Oryza sativa L.) , 1999, Plant Cell Reports.

[27]  P. Christou,et al.  Soybean genetic engineering - commercial production of transgenic plants , 1990 .

[28]  M. Sticklen,et al.  Culturing shoot-tip clumps of pearl millet [Pennisetum glaucum (L.) R. Br.] and optimal microprojectile bombardment parameters for transient expression , 2002, Euphytica.

[29]  P. Christou,et al.  Stable Transformation of Soybean (Glycine Max) by Particle Acceleration , 1988, Bio/Technology.

[30]  C. Srinivasan,et al.  In-vitro morphogenesis of corn (Zea mays L.) , 1992, Planta.

[31]  L. Tagliani,et al.  Characterization of the regulatory elements of the maize P-rr gene by transient expression assays , 2004, Plant Molecular Biology.

[32]  P. Morris,et al.  Integration, expression and inheritance of transgenes in hexaploid oat (Avena sativa L.). , 2003, Journal of plant physiology.

[33]  P. Ozias‐Akins,et al.  Evaluation of selectable markers for obtaining stable transformants in the gramineae. , 1988, Plant physiology.

[34]  S. Riazuddin,et al.  Expression of synthetic Cry1Ab and Cry1Ac genes in basmati rice (Oryza sativa L.) variety 370 via Agrobacterium-mediated transformation for the control of the european corn borer (Ostrinia nubilalis) , 2002, In Vitro Cellular & Developmental Biology - Plant.

[35]  D. Nhựt,et al.  Somatic embryogenesis and direct shoot regeneration of rice (Oryza sativa L.) using thin cell layer culture of apical meristematic tissue , 2000 .

[36]  K. Oldach,et al.  Transgenic and herbicide resistant pearl millet (Pennisetum glaucum L.) R.Br. via microprojectile bombardment of scutellar tissue , 2002, Molecular Breeding.

[37]  L. Crossland,et al.  Field Performance of Elite Transgenic Maize Plants Expressing an Insecticidal Protein Derived from Bacillus thuringiensis , 1993, Bio/Technology.

[38]  N. Seetharama,et al.  Plant regeneration from embryogenic cell suspension cultures of wild sorghum (Sorghum dimidiatum Stapf.) , 1999, Plant Cell Reports.

[39]  E. Irish,et al.  Regulation of extent of vegetative development of the maize shoot meristem , 1997 .

[40]  D. Pental,et al.  Regeneration and genetic transformation of grain legumes: An overview , 2003 .

[41]  T. Hall,et al.  Stable transformation of Sorghum bicolor protoplasts with chimeric neomycin phosphotransferase II and β-glucuronidase genes , 1991, Theoretical and Applied Genetics.

[42]  M. Fromm,et al.  Inheritance and Expression of Chimeric Genes in the Progeny of Transgenic Maize Plants , 1990, Bio/Technology.

[43]  M. Gautier,et al.  Characterization of a barley gene coding for an α-amylase inhibitor subunit (CMd protein) and analysis of its promoter in transgenic tobacco plants and in maize kernels by microprojectile bombardment , 1997, Plant Molecular Biology.

[44]  J. Dunwell,et al.  Production of Fertile Transgenic Maize Plants by Silicon Carbide Whisker-Mediated Transformation , 1994 .

[45]  P. Bregitzer,et al.  Inheritance and Expression of Transgenes in Barley , 2003 .

[46]  C. Srinivasan,et al.  In-vitro morphogenesis of corn (Zea mays L.) , 1992, Planta.

[47]  P. Lemaux,et al.  Genetic transformation of commercial cultivars of oat (Avena sativa L.) and barley (Hordeum vulgare L.) using in vitro shoot meristematic cultures derived from germinated seedlings , 1999, Plant Cell Reports.

[48]  G. Brar,et al.  Recovery of transgenic peanut (Arachis hypogaea L.) plants from elite cultivars utilizing ACCELL® technology , 1994 .

[49]  H. Zhong,et al.  Variation in the inheritance of expression among subclones for unselected (uidA) and selected (bar) transgenes in maize (Zea mays L.) , 1996, Theoretical and Applied Genetics.

[50]  J. Simmonds Mitotic activity in wheat shoot apical meristems : effect of dissection to expose the apical dome , 1997 .

[51]  C. Gless,et al.  Transgenic oat plants obtained at high efficiency by microprojectile bombardment of leaf base segments , 1998 .

[52]  H. Zhong,et al.  Competence of oat (Avena sativa L.) shoot apical meristems for integrative transformation, inherited expression, and osmotic tolerance of transgenic lines containing hva1 , 2002, Theoretical and Applied Genetics.

[53]  R. Deltour,et al.  Somatic embryogenesis in pearl millet (Pennisetum glaucum): Strategies to reduce genotype limitation and to maintain long-term totipotency , 1998, Plant Cell, Tissue and Organ Culture.

[54]  T. Nelson,et al.  Identification of multiple stages in the conversion of vegetative to floral development , 1991 .

[55]  W. Wernicke,et al.  The regeneration potential of wheat shoot meristems in the presence and absence of 2,4-dichlorophenoxyacetic acid , 1986, Protoplasma.

[56]  H. Sano,et al.  Characterization of transgenic rice plants that express rgp1, the gene for a small GTP-binding protein from rice , 1998, Theoretical and Applied Genetics.

[57]  M. Davey,et al.  Transformation of barley scutellum protoplasts: regeneration of fertile transgenic plants , 2000, Plant Cell Reports.

[58]  P. Lazzeri,et al.  Fertile transgenic barley generated by direct DNA transfer to protoplasts , 1995, Theoretical and Applied Genetics.

[59]  S. Knudsen,et al.  Transformation of the developing barley endosperm by particle bombardment , 1991, Planta.

[60]  Zuo-yu Zhao,et al.  Agrobacterium-mediated sorghum transformation , 2000, Plant Molecular Biology.

[61]  R. F. Lyndon The shoot apical meristem , 1998 .

[62]  B. Hohn,et al.  Competence of Immature Maize Embryos for Agrobacterium-Mediated Gene Transfer. , 1992, The Plant cell.

[63]  R. Matagne,et al.  Differential long-term expression and methylation of the hygromycin phosphotransferase (hph) and β-glucuronidase (GUS) genes in transgenic pearl millet (Pennisetum glaucum) callus , 1995 .

[64]  H. Zhong,et al.  In vitro morphogenesis of Sorghum bicolor (L.) moench: Efficient plant regeneration from shoot apices , 1998 .

[65]  I. Potrykus,et al.  In vitro germination of wheat proembryos to fertile plants , 1994, Plant Cell Reports.

[66]  H. Wang,et al.  Efficient biolistic transformation of maize (Zea mays L.) and wheat (Triticum aestivum L.) using the phosphomannose isomerase gene, pmi, as the selectable marker , 2001, Plant Cell Reports.

[67]  D. Dudits,et al.  Activity of a chimeric promoter with the doubled CaMV 35S enhancer element in protoplast-derived cells and transgenic plants in maize , 1993, Plant Molecular Biology.

[68]  H. Zhang,et al.  Production of Multiple Shoots from Shoot Apical Meristems of Oat (Avena sativaL.) , 1996 .

[69]  Thompson,et al.  Identification of a promoter sequence from the BETL1 gene cluster able to confer transfer-cell-specific expression in transgenic maize , 1999, Plant physiology.

[70]  M. McMullen,et al.  Osmotic treatment enhances particle bombardment-mediated transient and stable transformation of maize , 2004, Plant Cell Reports.

[71]  N. Grimsley,et al.  Meristematic Tissues of Maize Plants Are Most Susceptible to Agroinfection With Maize Streak Virus , 1988, Bio/Technology.

[72]  P. Schnable,et al.  Production of transgenic maize from bombarded type II callus: Effect of gold particle size and callus morphology on transformation efficiency , 2000, In Vitro Cellular & Developmental Biology - Plant.

[73]  L. Dahleen,et al.  Genetic transformation of the commercial barley (Hordeum vulgare L.) cultivar Conlon by particle bombardment of callus , 2002, Plant Cell Reports.

[74]  Camille DeLuca-Flaherty,et al.  Transgenic Corn Plants Expressing MDMV Strain B Coat Protein are Resistant to Mixed Infections of Maize Dwarf Mosaic Virus and Maize Chlorotic Mottle Virus , 1993, Bio/Technology.

[75]  Satish Kumar,et al.  In vitro induction and enlargement of apical domes and formation of multiple shoots in finger millet, Eleusine coracana (L.) Gaertn and crowfoot grass, Eleusine indica (L.) Gaertn , 2001 .

[76]  M. Guiltinan,et al.  The maize EmBP-1 orthologue differentially regulates Opaque2-dependent gene expression in yeast and cultured maize endosperm cells , 1999, Plant Molecular Biology.

[77]  P. Dale,et al.  A comparison of methods for delivering DNA to wheat: the application of wheat dwarf virus DNA to seeds with exposed apical meristems , 1992, Transgenic Research.

[78]  I. Vasil Developing Cell and Tissue Culture Systems for the Improvement of Cereal and Grass Crops , 1987 .

[79]  A. H. van der Geest,et al.  Expression of a modified green fluorescent protein gene in transgenic maize plants and progeny , 1998, Plant Cell Reports.

[80]  R. Lundquist,et al.  Transformation and inheritance of a hygromycin phosphotransferase gene in maize plants , 2004, Plant Molecular Biology.

[81]  S. Muthukrishnan,et al.  Transgenic sorghum plants constitutively expressing a rice chitinase gene show improved resistance to stalk rot [Sorghum bicolor (L.) Moench] , 2001 .

[82]  T. Loeb,et al.  Transient expression of the uidA gene in pollen embryoids of wheat following microprojectile bombardment , 1994 .

[83]  T. Komari,et al.  Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. , 1994, The Plant journal : for cell and molecular biology.

[84]  D W Galbraith,et al.  Green-fluorescent protein as a new vital marker in plant cells. , 1995, The Plant journal : for cell and molecular biology.

[85]  K. Ito,et al.  Rapid production of fertile transgenic barley (Hordeum vulgare L.) by direct gene transfer to primary callus-derived protoplasts , 1998, Plant Cell Reports.

[86]  I. Potrykus,et al.  An approach towards genetically engineered cell fate mapping in maize using the Lc gene as a visible marker: transactivation capacity of Lc vectors in differentiated maize cells and microinjection of Lc vectors into somatic embryos and shoot apical meristems. , 1994, The Plant journal : for cell and molecular biology.

[87]  Carl N. McDaniel,et al.  Cell-lineage patterns in the shoot apical meristem of the germinating maize embryo , 1988, Planta.

[88]  S. Hake,et al.  A knotted1-like homeobox gene in Arabidopsis is expressed in the vegetative meristem and dramatically alters leaf morphology when overexpressed in transgenic plants. , 1994, The Plant cell.

[89]  J. Able,et al.  The investigation of optimal bombardment parameters for transient and stable transgene expression in Sorghum , 2001, In Vitro Cellular & Developmental Biology - Plant.

[90]  A. Mentewab,et al.  Use of anthocyanin biosynthesis stimulatory genes as markers for the genetic transformation of haploid embryos and isolated microspores in wheat , 1999 .

[91]  H. Zhong,et al.  In vitro morphogenesis of pearl millet [Pennisetum glaucum (L.) R.Br.]: efficient production of multiple shoots and inflorescences from shoot apices , 2000, Plant Cell Reports.

[92]  Wang Jingxue,et al.  Transgenic Maize Plants Obtained by Pollen-mediated Transformation , 2001 .

[93]  R. Brueggeman,et al.  Genetically engineered stem rust resistance in barley using the Rpg1 gene , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[94]  S. Dalton,et al.  Transformation of oat and inheritance of bar gene expression , 2001, Plant Cell, Tissue and Organ Culture.

[95]  Shibo Zhang,et al.  Transient gene expression in vegetative shoot apical meristems of wheat after ballistic microtargeting , 1993 .

[96]  F. Altpeter,et al.  Agrobacterium-mediated barley (Hordeum vulgare L.) transformation using green fluorescent protein as a visual marker and sequence analysis of the T-DNA∝barley genomic DNA junctions , 2002 .

[97]  Lynn Sims,et al.  Microprojectile bombardment of plant tissues increases transformation frequency by Agrobacterium tumefaciens , 2004, Plant Molecular Biology.

[98]  B. Dale,et al.  The pea (Pisum sativum L.) rbcS transit peptide directs the Alcaligenes eutrophus polyhydroxybutyrate enzymes into the maize (Zea mays L.) chloroplasts , 2003 .

[99]  N. Bohorova,et al.  Novel synthetic Bacillus thuringiensiscry1B gene and the cry1B-cry1Ab translational fusion confer resistance to southwestern corn borer, sugarcane borer and fall armyworm in transgenic tropical maize , 2001, Theoretical and Applied Genetics.

[100]  L. Herrera-Estrella,et al.  Transgenic maize plants of tropical and subtropical genotypes obtained from calluses containing organogenic and embryogenic-like structures derived from shoot tips , 2002, Plant Cell Reports.

[101]  M. Fromm,et al.  Rapid Production of Transgenic Wheat Plants by Direct Bombardment of Cultured Immature Embryos , 1993, Bio/Technology.

[102]  P. Ozias‐Akins,et al.  Fertile transgenic pearl millet [Pennisetum glaucum (L.) R. Br.] plants recovered through microprojectile bombardment and phosphinothricin selection of apical meristem-, inflorescence-, and immature embryo-derived embryogenic tissues , 2003, Plant Cell Reports.

[103]  E. Mansur,et al.  Effects of auxin and light treatments of donor plants on shoot production fromindica-type rice (Oryza sativa L.) , 1998, In Vitro Cellular & Developmental Biology - Plant.

[104]  R. Swennen,et al.  Optimisation of transformation conditions and production of transgenic sorghum (Sorghum bicolor) via microparticle bombardment , 2003, Plant Cell, Tissue and Organ Culture.

[105]  D. Mccabe,et al.  Transformation of Elite Cotton Cultivars via Particle Bombardment of Meristems , 1993, Bio/Technology.

[106]  P. Lemaux,et al.  Long-term stability of transgene expression driven by barley endosperm-specific hordein promoters in transgenic barley , 2003, Plant Cell Reports.

[107]  H. Ebinuma,et al.  Single-step transformation for generating marker-free transgenic rice using the ipt-type MAT vector system. , 2002, The Plant journal : for cell and molecular biology.

[108]  T. Komari,et al.  High efficiency transformation of maize (Zea mays L.) mediated by Agrobacterium tumefaciens , 1996, Nature Biotechnology.

[109]  P. Shewry,et al.  Expression of the gamma-zein protein of maize in seeds of transgenic barley: effects on grain composition and properties , 2003, Theoretical and Applied Genetics.

[110]  S. Castelletti,et al.  Agrobacterium tumefaciens-mediated trasformation of rice (Oryza sativa L. ssp. japonica) Italian cultivars. 1. Interaction among Agrobacterium strains and rice genotypes in embryogenic callus of somatic and gametic origin , 1998 .

[111]  P. Stamp,et al.  Gametic embryos of maize as a target for biolistic transformation: comparison to immature zygotic embryos , 2003, Plant Cell Reports.

[112]  E. Earle,et al.  Stable transformation of sorghum cell cultures after bombardment with DNA-coated microprojectiles , 1991, Plant Cell Reports.

[113]  M. D. Beuckeleer,et al.  Transgenic maize plants by tissue electroporation. , 1992, The Plant cell.

[114]  T. Komari,et al.  Transformation of rice mediated by Agrobacterium tumefaciens , 1997, Plant Molecular Biology.

[115]  D. Somers,et al.  Transformation of Oat Using Mature Embryo-Derived Tissue Cultures , 1998 .

[116]  D. Pierce,et al.  Genetically transformed maize plants from protoplasts. , 1988, Science.

[117]  M. Jusaitis Micropropagation of adult Swainsona formosa (Leguminosae: Papilionoideae: Galegeae) , 1997, In Vitro Cellular & Developmental Biology - Plant.

[118]  Shibo Zhang,et al.  Analysis of the functional activity of the 1.4-kb 5′-region of the rice actin 1 gene in stable transgenic plants of maize (Zea mays L.) , 1996 .

[119]  G. Leckband,et al.  Transformation and expression of a stilbene synthase gene of Vitis vinifera L. in barley and wheat for increased fungal resistance , 1998, Theoretical and Applied Genetics.

[120]  P. Anderson,et al.  Production of fertile transgenic maize by electroporation of suspension culture cells , 2004, Plant Molecular Biology.

[121]  M. Fromm,et al.  Glyphosate as a selective agent for the production of fertile transgenic maize (Zea mays L.) plants , 2002, Molecular Breeding.

[122]  S. Goldman,et al.  Shoot meristem: an ideal explant for Zea mays L. transformation. , 2003, Genome.

[123]  P. Lemaux,et al.  High-frequency transformation of oat via microprojectile bombardment of seed-derived highly regenerative cultures , 1999 .

[124]  S. Bhaskaran,et al.  Control of morphogenesis in sorghum by 2,4-dichlorophenoxyacetic acid and cytokinins , 1989 .

[125]  S. Muthukrishnan,et al.  Optimization of sorghum transformation parameters using genes for green fluorescent protein and beta-glucuronidase as visual markers. , 2002, Hereditas.

[126]  D. Simmonds,et al.  Regeneration of Triticum aestivum apical explants after microinjection of germ line progenitor cells with DNA , 1992 .

[127]  Chen Zhuomin,et al.  Transgenic wheat plants resistant to barley yellow dwarf virus obtained by pollen tube pathway-mediated transformation. , 1997 .

[128]  D. Dudits,et al.  Production of transgenic maize plants by direct DNA uptake into embryogenic protoplasts , 1993 .

[129]  J. Snape,et al.  Use of the firefly luciferase gene in a barley (Hordeum vulgare) transformation system , 2002, Plant Cell Reports.

[130]  Wenbin Li,et al.  Developmental, tissue culture, and genotypic factors affecting plant regeneration from shoot apical meristems of germinated Zea mays L. Seedlings , 2002, In Vitro Cellular & Developmental Biology - Plant.

[131]  I. Potrykus,et al.  Transient expression of visible marker genes in meristem cells of wheat embryos after ballistic micro-targeting , 1993, Planta.

[132]  S. Eapen,et al.  High frequency plant regeneration through somatic embryogenesis in finger millet (Eleusine coracana Gaertn) , 1989 .

[133]  B. Gordon-Kamm,et al.  Germline Transformation of Maize Following Manipulation of Chimeric Shoot Meristems , 1995, Bio/Technology.

[134]  T. Murashige,et al.  In vitro development of the isolated shoot apical meristem of angiosperms. , 1970 .

[135]  V. Vitanov,et al.  Effect of 2,4-D precultivation on regeneration capacity of cultivated barley , 1995, Plant Cell Reports.

[136]  M. Scott,et al.  Expression and inheritance of the wheat Glu-1DX5 gene in transgenic maize , 2002, Theoretical and Applied Genetics.

[137]  Zuo-yu Zhao,et al.  High throughput genetic transformation mediated by Agrobacterium tumefaciens in maize , 2002, Molecular Breeding.

[138]  P. Christou,et al.  Recovery of Chimeric Rice Plants from Dry Seed using Electric Discharge Particle Acceleration , 1995 .

[139]  R. Datla,et al.  The effect of different promoter-sequences on transient expression of gus reporter gene in cultured barley (Hordeum vulgare L.) cells , 1993, Plant Cell Reports.

[140]  H. Zhong,et al.  Shoot apical meristem: In vitro regeneration and morphogenesis in wheat (Triticum aestivum L.) , 2002, In Vitro Cellular & Developmental Biology - Plant.

[141]  S. Pinson,et al.  T-DNA integration into genomic DNA of rice following Agrobacterium inoculation of isolated shoot apices , 1996, Plant Molecular Biology.

[142]  M. Devey,et al.  Transformation of Zea mays L. Using Agrobacterium tumefaciens and the Shoot Apex. , 1991, Plant physiology.

[143]  P. Lemaux,et al.  Generation of Large Numbers of Independently Transformed Fertile Barley Plants , 1994, Plant physiology.

[144]  Trevor C. Charles,et al.  Discrete regions of the sensor protein virA determine the strain-specific ability of Agrobacterium to agroinfect maize. , 1997, Molecular plant-microbe interactions : MPMI.

[145]  W. Sawahel,et al.  Generation of transgenic wheat plants producing high levels of the osmoprotectant proline , 2002, Biotechnology Letters.

[146]  M. Chilton,et al.  T-strand integration in maize protoplasts after codelivery of a T-DNA substrate and virulence genes. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[147]  F. Skoog,et al.  A revised medium for the growth and bioassay with tobacco tissue culture , 1962 .

[148]  S. Muthukrishnan,et al.  Biolistic transformation of sorghum using a rice chitinase gene [Sorghum bicolor (L.) Moench - Oryza sativa L.] , 1998 .

[149]  K. Rathore,et al.  Transgene silencing and reactivation in sorghum , 2002 .

[150]  K. Kartha Cryopreservation of Plant Cells and Organs , 1985 .

[151]  E. Krebbers,et al.  Characterisation of the expression of a novel constitutive maize promoter in transgenic wheat and maize , 2003, Plant Cell Reports.