Decentralized CFAR detection with binary integration in Weibull clutter

The analysis of a distributed multiradar system with decentralized decisions, operating in the presence of nonstationary Weibull clutter is presented. Each sensor employs a constant false-alarm rate (CFAR) algorithm and binary integration and transmits its local decisions to the fusion center, which takes the final decision. Optimal local double thresholds and decision fusion rule are determined according to the Neyman-Pearson (N-P) criterion and the global performance is evaluated by a novel approach to optimize distributed binary integration systems.

[1]  D. Schleher,et al.  Radar Detection in Weibull Clutter , 1976, IEEE Transactions on Aerospace and Electronic Systems.

[2]  Robert R. Tenney,et al.  Detection with distributed sensors , 1980 .

[3]  R. Srinivasan Distributed radar detection theory , 1986 .

[4]  A. Farina,et al.  Overview of detection theory in multistatic radar , 1986 .

[5]  Jerry M. Mendel,et al.  Lessons in digital estimation theory , 1986 .

[6]  P.K. Varshney,et al.  Optimal Data Fusion in Multiple Sensor Detection Systems , 1986, IEEE Transactions on Aerospace and Electronic Systems.

[7]  R. Srinivasan,et al.  Distributed detection of swerling targets , 1986 .

[8]  L.W. Nolte,et al.  Design and Performance Comparison of Distributed Detection Networks , 1987, IEEE Transactions on Aerospace and Electronic Systems.

[9]  Ramanarayanan Viswanathan,et al.  Optimal Decision Fusion in Multiple Sensor Systems , 1987, IEEE Transactions on Aerospace and Electronic Systems.

[10]  Amy R. Reibman,et al.  Optimal Detection and Performance of Distributed Sensor Systems , 1987 .

[11]  A. Farina,et al.  Radar detection in coherent Weibull clutter , 1987, IEEE Trans. Acoust. Speech Signal Process..

[12]  Ramanarayanan Viswanathan,et al.  Optimal distributed decision fusion , 1989 .

[13]  M. Barkat,et al.  Decentralized CFAR signal detection , 1989 .

[14]  Pramod K. Varshney,et al.  Adaptive cell-averaging CFAR detection in distributed sensor networks , 1991 .

[15]  Rafi Ravid,et al.  Maximum-likelihood CFAR for Weibull background , 1992 .

[16]  A. Elias-Fuste,et al.  CFAR data fusion center with inhomogeneous receivers , 1992 .

[17]  M. Longo,et al.  Biparametric linear estimation for CFAR against Weibull clutter , 1992 .

[18]  Pramod K. Varshney,et al.  Distributed binary integration , 1993 .

[19]  R. Srinivasan Designing distributed detection systems , 1993 .

[20]  T. Musha,et al.  Models of clutter , 1993 .

[21]  Maria Greco,et al.  Distributed detection in weibull clutter , 1993 .

[22]  Peter Willett,et al.  The case for like-sensor predetection fusion , 1994 .

[23]  A. Farina,et al.  Coherent radar detection of targets against a combination of K-distributed and Gaussian clutter , 1995, Proceedings International Radar Conference.

[24]  F. Gini,et al.  Cramer-Rao bounds and estimation of the parameters of the Gumbel distribution , 1995 .

[25]  K. J. Sangston,et al.  Optimum and sub-optimum coherent radar detection in compound Gaussian clutter: a data-dependent threshold interpretation , 1996, Proceedings of the 1996 IEEE National Radar Conference.

[26]  Fabrizio Lombardini,et al.  Communication-constrained distributed radar detection in spiky clutter , 1996, Proceedings of the 1996 IEEE National Radar Conference.

[27]  Garret N. Vanderplaats,et al.  Numerical optimization techniques for engineering design , 1999 .