Increasing the energy density of the non-aqueous vanadium redox flow battery with the acetonitrile-1,3-dioxolane–dimethyl sulfoxide solvent mixture

[1]  Jens Noack,et al.  A Comparison of Materials and Treatment of Materials for Vanadium Redox Flow Battery , 2010, ECS Transactions.

[2]  P. Fischer,et al.  1,3-Dioxolane, tetrahydrofuran, acetylacetone and dimethyl sulfoxide as solvents for non-aqueous vanadium acetylacetonate redox-flow-batteries , 2013 .

[3]  Seung-Hyeon Moon,et al.  A review of current developments in non-aqueous redox flow batteries: characterization of their membranes for design perspective , 2013 .

[4]  C. Low,et al.  Progress in redox flow batteries, remaining challenges and their applications in energy storage , 2012 .

[5]  Lelia Cosimbescu,et al.  Anthraquinone with tailored structure for a nonaqueous metal-organic redox flow battery. , 2012, Chemical communications.

[6]  Bin Li,et al.  Recent Progress in Redox Flow Battery Research and Development , 2012 .

[7]  M. Roy,et al.  Conductivity is a contrivance to explore ion-pair and triple-ion structure of ethanoates in tetrahydrofuran, dimethyl sulfoxide and their binaries , 2012 .

[8]  Charles W. Monroe,et al.  Degradation mechanisms in the non-aqueous vanadium acetylacetonate redox flow battery , 2012 .

[9]  M. Mench,et al.  Redox flow batteries: a review , 2011 .

[10]  Maria Skyllas-Kazacos,et al.  Progress in Flow Battery Research and Development , 2011 .

[11]  Charles W. Monroe,et al.  Non-aqueous manganese acetylacetonate electrolyte for redox flow batteries , 2011 .

[12]  Charles W. Monroe,et al.  Electrode kinetics in non-aqueous vanadium acetylacetonate redox flow batteries , 2011 .

[13]  J. Świergiel,et al.  On intermolecular dipolar coupling in two strongly polar liquids: dimethyl sulfoxide and acetonitrile. , 2011, The journal of physical chemistry. B.

[14]  Charles W. Monroe,et al.  Non-aqueous chromium acetylacetonate electrolyte for redox flow batteries , 2009 .

[15]  T. Terme,et al.  Solvatochromism and preferential solvation of 1,4-dihydroxy-2,3-dimethyl-9,10-anthraquinone by UV-vis absorption and laser-induced fluorescence measurements. , 2008, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[16]  S. Bagchi,et al.  UV-visible spectroscopic study of solvation in ternary solvent mixtures: ketocyanine dye in methanol + acetone + water and methanol + acetone + benzene. , 2008, The journal of physical chemistry. B.

[17]  P. Santos,et al.  Using Raman spectroscopy to investigate donor–acceptor reactions in the formamide/dimethylsulfoxide/acetonitrile system , 2007 .

[18]  M. H. Chakrabarti,et al.  Evaluation of electrolytes for redox flow battery applications , 2007 .

[19]  C. Ponce de León,et al.  Redox flow cells for energy conversion , 2006 .

[20]  P. Kurzweil,et al.  A new monitoring method for electrochemical aggregates by impedance spectroscopy , 2004 .

[21]  H. Stassen,et al.  Molecular dynamics simulations of acetonitrile/dimethyl sulfoxide liquid mixtures. , 2004, The Journal of chemical physics.

[22]  J. Barthel,et al.  Non-aqueous electrolyte solutions , 1983, Naturwissenschaften.

[23]  K. Izutsu Electrochemistry in Nonaqueous Solutions , 2002 .

[24]  J. Besenhard,et al.  Handbook of Battery Materials , 1998 .

[25]  J. Barthel,et al.  Nonaqueous electrolyte solutions: New materials for devices and processes based on recent applied research , 1995 .

[26]  Y. Marcus,et al.  The properties of organic liquids that are relevant to their use as solvating solvents , 1994 .

[27]  H. Schneider,et al.  Dimethylpropyleneurea-water mixtures: 1. Physical properties , 1990 .

[28]  A. Ben-Naim Preferential solvation in two-component systems , 1989 .

[29]  M. Morita,et al.  Dimethyl sulfoxide-based electrolytes for rechargeable lithium batteries , 1987 .

[30]  B. Vlčková,et al.  Measurement and interpretation of infrared and raman spectra of vanadyl acetylacetonate , 1987 .

[31]  K. Izutsu,et al.  Silver-Silver Cryptate(2,2) Ion Electrode as a Reference Electrode in Nonaqueous Solvents , 1985 .

[32]  Maria Skyllas-Kazacos,et al.  Investigation of the V(V)/V(IV) system for use in the positive half-cell of a redox battery , 1985 .

[33]  Maria Skyllas-Kazacos,et al.  A study of the V(II)/V(III) redox couple for redox flow cell applications , 1985 .

[34]  Jürgen Heinze,et al.  Cyclovoltammetrie — die „Spektroskopie”︁ des Elektrochemikers , 1984 .

[35]  Surjit Singh,et al.  Self-association of dimethyl sulphoxide and its dipolar interactions with water: Raman spectral studies , 1984 .

[36]  Bernd Speiser Elektroanalytische Methoden II†: Cyclische Voltammetrie , 1981 .

[37]  B. J. Barker,et al.  Harnstoffe als Lösungsmittel in der chemischen Forschung , 1979 .

[38]  Richard S. Nicholson,et al.  Theory and Application of Cyclic Voltammetry for Measurement of Electrode Reaction Kinetics. , 1965 .

[39]  Richard S. Nicholson,et al.  Some Examples of the Numerical Solution of Nonlinear Integral Equations , 1965 .

[40]  R. S. Nicholson,et al.  Theory of Stationary Electrode Polarography. Single Scan and Cyclic Methods Applied to Reversible, Irreversible, and Kinetic Systems. , 1964 .