A High-Power and Scalable 2-D Phased Array for Terahertz CMOS Integrated Systems

This work introduces a 2-D phased array architecture that is suitable for high power radiation at mm-Wave and Terahertz frequencies. We address the challenge of signal generation above the cut-off frequency of transistors by presenting a radiation method based on the collective performance of a large number of synchronized sources. As theory shows, both frequency locking/tuning and beam steering can be independently achieved by manipulating the local coupling between the nearest neighbors. This control method results in a dynamical network that is insensitive to array dimensions and is scalable to the point that can achieve a level of output power and spectral purity beyond the reach of conventional sources. To demonstrate the concept, we implement a 4 ×4 version of this phased array at 340 GHz using a 65 nm bulk CMOS process. The paper presents the design and implementation of the oscillators, couplings and the integrated antennas. The measured results at 338 GHz reveal a peak equivalent isotropically radiated power (EIRP) of +17.1 dBm and a phase noise of -93 dBc/Hz at the 1 MHz offset frequency. This chip presents the first fully integrated terahertz phased array on silicon. Furthermore, the output power is higher than any lens-less silicon-based source above 200 GHz and the phase noise is lower than all silicon radiating sources above 100 GHz.

[1]  Duixian Liu,et al.  A Fully-Integrated 16-Element Phased-Array Receiver in SiGe BiCMOS for 60-GHz Communications , 2010, IEEE Journal of Solid-State Circuits.

[2]  Munkyo Seo,et al.  InP HBT IC Technology for Terahertz Frequencies: Fundamental Oscillators Up to 0.57 THz , 2011, IEEE Journal of Solid-State Circuits.

[3]  R. Adler A Study of Locking Phenomena in Oscillators , 1946, Proceedings of the IRE.

[4]  Ali M. Niknejad,et al.  A 94 GHz mm-Wave-to-Baseband Pulsed-Radar Transceiver with Applications in Imaging and Gesture Recognition , 2013, IEEE Journal of Solid-State Circuits.

[5]  M. Ruberto,et al.  A CMOS Bidirectional 32-Element Phased-Array Transceiver at 60 GHz With LTCC Antenna , 2012, IEEE Transactions on Microwave Theory and Techniques.

[6]  Ehsan Afshari,et al.  14.8 A 247-to-263.5GHz VCO with 2.6mW peak output power and 1.14% DC-to-RF efficiency in 65nm Bulk CMOS , 2014, 2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC).

[7]  K. Schmalz,et al.  A 245 GHz transmitter in SiGe technology , 2012, 2012 IEEE Radio Frequency Integrated Circuits Symposium.

[8]  Jri Lee,et al.  A 94 GHz 3D Image Radar Engine With 4TX/4RX Beamforming Scan Technique in 65 nm CMOS Technology , 2015, IEEE Journal of Solid-State Circuits.

[9]  Ehsan Afshari,et al.  Delay coupled oscillators for frequency tuning of solid-state terahertz sources. , 2012, Physical review letters.

[10]  R. Stegen The gain-beamwidth product of an antenna , 1964 .

[11]  A. Babakhani,et al.  An Integrated Subharmonic Coupled-Oscillator Scheme for a 60-GHz Phased-Array Transmitter , 2006, IEEE Transactions on Microwave Theory and Techniques.

[12]  Ehsan Afshari,et al.  Active Terahertz Imaging Using Schottky Diodes in CMOS: Array and 860-GHz Pixel , 2013, IEEE Journal of Solid-State Circuits.

[13]  Koichiro Tanaka,et al.  A Fully Integrated 60-GHz CMOS Transceiver Chipset Based on WiGig/IEEE 802.11ad With Built-In Self Calibration for Mobile Usage , 2013, IEEE Journal of Solid-State Circuits.

[14]  Yan Zhao,et al.  A 1 k-Pixel Video Camera for 0.7–1.1 Terahertz Imaging Applications in 65-nm CMOS , 2012, IEEE Journal of Solid-State Circuits.

[15]  Jri Lee,et al.  A Fully-Integrated 77-GHz FMCW Radar Transceiver in 65-nm CMOS Technology , 2010, IEEE Journal of Solid-State Circuits.

[16]  Tobias Klein,et al.  A Low-Power Wideband Transmitter Front-End Chip for 80 GHz FMCW Radar Systems With Integrated 23 GHz Downconverter VCO , 2012, IEEE Journal of Solid-State Circuits.

[17]  Yan Zhao,et al.  A 288-GHz Lens-Integrated Balanced Triple-Push Source in a 65-nm CMOS Technology , 2013, IEEE Journal of Solid-State Circuits.

[18]  Bernd Heinemann,et al.  A 220GHz subharmonic receiver front end in a SiGe HBT technology , 2011, 2011 IEEE Radio Frequency Integrated Circuits Symposium.

[19]  Noriaki Kaneda,et al.  A 70–100 GHz Direct-Conversion Transmitter and Receiver Phased Array Chipset Demonstrating 10 Gb/s Wireless Link , 2013, IEEE Journal of Solid-State Circuits.

[20]  Ehsan Afshari,et al.  A Novel CMOS High-Power Terahertz VCO Based on Coupled Oscillators: Theory and Implementation , 2012, IEEE Journal of Solid-State Circuits.

[21]  André Bourdoux,et al.  A 79 GHz Phase-Modulated 4 GHz-BW CW Radar Transmitter in 28 nm CMOS , 2014, IEEE Journal of Solid-State Circuits.

[22]  Brian P. Ginsburg,et al.  A 160 GHz Pulsed Radar Transceiver in 65 nm CMOS , 2014, IEEE Journal of Solid-State Circuits.

[23]  Gabriel M. Rebeiz,et al.  A 0.32 THz SiGe 4x4 Imaging Array Using High-Efficiency On-Chip Antennas , 2013, IEEE Journal of Solid-State Circuits.

[24]  Ali M. Niknejad,et al.  A 0.38 THz Fully Integrated Transceiver Utilizing a Quadrature Push-Push Harmonic Circuitry in SiGe BiCMOS , 2012, IEEE Journal of Solid-State Circuits.

[25]  Zheng Wang,et al.  Design and Analysis of a W-band 9-Element Imaging Array Receiver Using Spatial-Overlapping Super-Pixels in Silicon , 2014, IEEE Journal of Solid-State Circuits.

[26]  A. Arbabian,et al.  A three-stage cascaded distributed amplifier with GBW exceeding 1.5THz , 2012, 2012 IEEE Radio Frequency Integrated Circuits Symposium.

[27]  Ehsan Afshari,et al.  A CMOS High-Power Broadband 260-GHz Radiator Array for Spectroscopy , 2013, IEEE Journal of Solid-State Circuits.

[28]  Elad Alon,et al.  A 50mW-TX 65mW-RX 60GHz 4-element phased-array transceiver with integrated antennas in 65nm CMOS , 2013, 2013 IEEE International Solid-State Circuits Conference Digest of Technical Papers.

[29]  Ehsan Afshari,et al.  14.6 A scalable THz 2D phased array with +17dBm of EIRP at 338GHz in 65nm bulk CMOS , 2014, 2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC).

[30]  Kaushik Sengupta,et al.  A 0.28 THz Power-Generation and Beam-Steering Array in CMOS Based on Distributed Active Radiators , 2012, IEEE Journal of Solid-State Circuits.

[31]  Gabriel M. Rebeiz,et al.  A 108–114 GHz 4 $\,\times\,$4 Wafer-Scale Phased Array Transmitter With High-Efficiency On-Chip Antennas , 2013, IEEE Journal of Solid-State Circuits.

[32]  A. Tessmann,et al.  220-GHz metamorphic HEMT amplifier MMICs for high-resolution imaging applications , 2005, IEEE Journal of Solid-State Circuits.

[33]  K. Schmalz,et al.  245 GHz subharmonic receivers in SiGe , 2013, 2013 IEEE Radio Frequency Integrated Circuits Symposium (RFIC).

[34]  Ehsan Afshari,et al.  High Power Terahertz and Millimeter-Wave Oscillator Design: A Systematic Approach , 2011, IEEE Journal of Solid-State Circuits.

[35]  Christian Bredendiek,et al.  A 240 GHz single-chip radar transceiver in a SiGe bipolar technology with on-chip antennas and ultra-wide tuning range , 2013, 2013 IEEE Radio Frequency Integrated Circuits Symposium (RFIC).

[36]  Constantine A. Balanis,et al.  Antenna theory: a review , 1992, Proc. IEEE.

[37]  André Bourdoux,et al.  14.2 A 79GHz phase-modulated 4GHz-BW CW radar TX in 28nm CMOS , 2014, 2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC).

[38]  Omeed Momeni A 260GHz amplifier with 9.2dB gain and −3.9dBm saturated power in 65nm CMOS , 2013, 2013 IEEE International Solid-State Circuits Conference Digest of Technical Papers.

[39]  Ali Hajimiri,et al.  A millimeter-wave intra-connect solution , 2010, ISSCC 2010.

[40]  Danilo Manstretta,et al.  Analysis and Design of a 54 GHz Distributed “Hybrid” Wave Oscillator Array With Quadrature Outputs , 2014, IEEE Journal of Solid-State Circuits.

[41]  H.T. Friis,et al.  A Note on a Simple Transmission Formula , 1946, Proceedings of the IRE.

[42]  L. Samoska An Overview of Solid-State Integrated Circuit Amplifiers in the Submillimeter-Wave and THz Regime , 2011, IEEE Transactions on Terahertz Science and Technology.

[43]  Juergen Hasch,et al.  A Study of SiGe HBT Signal Sources in the 220–330-GHz Range , 2013, IEEE Journal of Solid-State Circuits.

[44]  Vipul Jain,et al.  Design and Analysis of a W-Band SiGe Direct-Detection-Based Passive Imaging Receiver , 2011, IEEE Journal of Solid-State Circuits.

[45]  Zheng Wang,et al.  14.7 A 300GHz frequency synthesizer with 7.9% locking range in 90nm SiGe BiCMOS , 2014, 2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC).

[46]  Ali M. Niknejad,et al.  A digitally modulated mm-Wave cartesian beamforming transmitter with quadrature spatial combining , 2013, 2013 IEEE International Solid-State Circuits Conference Digest of Technical Papers.

[47]  Bernd Heinemann,et al.  14.5 A 0.53THz reconfigurable source array with up to 1mW radiated power for terahertz imaging applications in 0.13μm SiGe BiCMOS , 2014, 2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC).

[48]  Duixian Liu,et al.  A Fully Integrated 16-Element Phased-Array Transmitter in SiGe BiCMOS for 60-GHz Communications , 2010, IEEE Journal of Solid-State Circuits.

[49]  Zheng Wang,et al.  A CMOS 210-GHz Fundamental Transceiver With OOK Modulation , 2014, IEEE Journal of Solid-State Circuits.