Existence, uniqueness, and approximation of a fictitious domain formulation for fluid-structure interactions

In this paper we describe a computational model for the simulation of fluid-structure interaction problems based on a fictitious domain approach. We summarize the results presented over the last years when our research evolved from the Finite Element Immersed Boundary Method (FEIBM) to the actual Finite Element Distributed Lagrange Multiplier method (FE-DLM). We recall the well-posedness of our formulation at the continuous level in a simplified setting. We describe various time semi-discretizations that provide unconditionally stable schemes. Finally we report the stability analysis for the finite element space discretization where some improvements and generalizations of the previous results are obtained.

[1]  S. Giuliani,et al.  Lagrangian and Eulerian Finite Element Techniques for Transient Fluid-Structure Interaction Problems , 1977 .

[2]  Fabio Nobile,et al.  Added-mass effect in the design of partitioned algorithms for fluid-structure problems , 2005 .

[3]  Daniel Coutand,et al.  The Interaction between Quasilinear Elastodynamics and the Navier-Stokes Equations , 2006 .

[4]  Takéo Takahashi,et al.  Analysis of strong solutions for the equations modeling the motion of a rigid-fluid system in a bounded domain , 2003, Advances in Differential Equations.

[5]  Daniele Boffi,et al.  The Finite Element Immersed Boundary Method with Distributed Lagrange Multiplier , 2014, SIAM J. Numer. Anal..

[6]  Ludmil T. Zikatanov,et al.  Some observations on Babu\vs}ka and Brezzi theories , 2003, Numerische Mathematik.

[7]  L. Heltai,et al.  On the hyper-elastic formulation of the immersed boundary method , 2008 .

[8]  C. W. Hirt,et al.  An Arbitrary Lagrangian-Eulerian Computing Method for All Flow Speeds , 1997 .

[9]  Miguel A. Fernández,et al.  An unfitted Nitsche method for incompressible fluid–structure interaction using overlapping meshes , 2014 .

[10]  C. Grandmont,et al.  Existence for an Unsteady Fluid-Structure Interaction Problem , 2000 .

[11]  D. Boffi,et al.  Advances in the Mathematical Theory of the Finite Element Immersed Boundary Method , 2014 .

[12]  Robert Michael Kirby,et al.  Unconditionally stable discretizations of the immersed boundary equations , 2007, J. Comput. Phys..

[13]  C. Peskin The immersed boundary method , 2002, Acta Numerica.

[14]  V. N. Starovoitov,et al.  ON A MOTION OF A SOLID BODY IN A VISCOUS FLUID. TWO-DIMENSIONAL CASE. , 1999 .

[15]  Max Gunzburger,et al.  Global Existence of Weak Solutions for Viscous Incompressible Flows around a Moving Rigid Body in Three Dimensions , 2000 .

[16]  J. Lions,et al.  Non-homogeneous boundary value problems and applications , 1972 .

[17]  F. Auricchio,et al.  On a fictitious domain method with distributed Lagrange multiplier for interface problems , 2015 .

[18]  R. Glowinski,et al.  Error analysis of a fictitious domain method applied to a Dirichlet problem , 1995 .

[19]  S. Čanić,et al.  Existence of a weak solution to a fluid-elastic structure interaction problem with the Navier slip boundary condition , 2015, 1505.04462.

[20]  A. Huerta,et al.  Arbitrary Lagrangian–Eulerian Methods , 2004 .

[21]  M. Boulakia,et al.  On the interaction problem between a compressible fluid and a Saint-Venant Kirchhoff elastic structure , 2017, Advances in Differential Equations.

[22]  Roland Glowinski,et al.  A Fictitious-Domain Method with Distributed Multiplier for the Stokes Problem , 2002 .

[23]  D. Serre,et al.  Chute libre d’un solide dans un fluide visqueux incompressible. existence , 1987 .

[24]  M. Vanninathan,et al.  A fluid–structure model coupling the Navier–Stokes equations and the Lamé system , 2014 .

[25]  Daniele Boffi,et al.  Higher-order time-stepping schemes for fluid-structure interaction problems , 2019, Discrete & Continuous Dynamical Systems - B.

[26]  Céline Grandmont,et al.  Weak solutions for a fluid-elastic structure interaction model , 2001 .

[27]  Daniel Coutand,et al.  Motion of an Elastic Solid inside an Incompressible Viscous Fluid , 2005 .

[28]  R. Glowinski,et al.  A fictitious domain method for external incompressible viscous flow modeled by Navier-Stokes equations , 1994 .

[29]  C. Conca,et al.  Motion of a rigid body in a viscous fluid , 1999 .

[30]  Céline Grandmont,et al.  Existence of Weak Solutions for the Unsteady Interaction of a Viscous Fluid with an Elastic Plate , 2005, SIAM J. Math. Anal..

[31]  Marius Tucsnak,et al.  Global Strong Solutions for the Two-Dimensional Motion of an Infinite Cylinder in a Viscous Fluid , 2004 .

[32]  B. Desjardins,et al.  On Weak Solutions for Fluid‐Rigid Structure Interaction: Compressible and Incompressible Models , 1999 .

[33]  Eduard Feireisl,et al.  On the Motion of Rigid Bodies in a Viscous Compressible Fluid , 2003 .

[34]  Daniele Boffi,et al.  Local Mass Conservation of Stokes Finite Elements , 2012, J. Sci. Comput..

[35]  Benoît Desjardins,et al.  Existence of Weak Solutions for the Motion of Rigid Bodies in a Viscous Fluid , 1999 .

[36]  Wing Kam Liu,et al.  Lagrangian-Eulerian finite element formulation for incompressible viscous flows☆ , 1981 .

[37]  S. Osher,et al.  A Level Set Formulation of Eulerian Interface Capturing Methods for Incompressible Fluid Flows , 1996 .

[38]  Daniele Boffi,et al.  Mixed formulation for interface problems with distributed Lagrange multiplier , 2014, Comput. Math. Appl..

[39]  H. B. Veiga On the Existence of Strong Solutions to a Coupled Fluid-Structure Evolution Problem , 2004 .

[40]  L. Heltai,et al.  Mathematical Models and Methods in Applied Sciences Vol. 17, No. 10 (17) 1479–1505 c ○ World Scientific Publishing Company NUMERICAL STABILITY OF THE FINITE ELEMENT IMMERSED BOUNDARY METHOD , 2005 .

[41]  R. Glowinski,et al.  A distributed Lagrange multiplier/fictitious domain method for particulate flows , 1999 .

[42]  Takéo Takahashi,et al.  Well-posedness for the coupling between a viscous incompressible fluid and an elastic structure , 2019, Nonlinearity.

[43]  Zhaosheng Yu A DLM/FD method for fluid/flexible-body interactions , 2005 .

[44]  D. Boffi,et al.  On the existence and the uniqueness of the solution to a fluid-structure interaction problem , 2020, Journal of Differential Equations.

[45]  Luca Heltai,et al.  A distributed lagrange formulation of the finite element immersed boundary method for fluids interacting with compressible solids , 2017, 1712.02545.

[46]  oris,et al.  Existence of a weak solution to a nonlinear fluid-structure interaction problem modeling the flow of an incompressible , viscous fluid in a cylinder with deformable walls , 2012 .

[47]  Miguel A. Fernández,et al.  Nitsche-XFEM for the coupling of an incompressible fluid with immersed thin-walled structures , 2016 .

[48]  R. Glowinski,et al.  A fictitious domain method for Dirichlet problem and applications , 1994 .

[49]  Daniele Boffi,et al.  A fictitious domain approach with Lagrange multiplier for fluid-structure interactions , 2015, Numerische Mathematik.