Compact basis sets for LCAO‐LSD calculations. Part I: Method and bases for Sc to Zn

A method for preparing compact orbital and auxiliary basis sets for LCAO‐LSD calculations has been developed. The method has been applied to construct basis sets for first row transition metal atoms from Sc to Zn for the 3dn−14s1 and 3dn−24s2 configurations. The properties of different expansion patterns have been tested in atomic calculations for the chromium atom.

[1]  B. Lundqvist,et al.  Exchange and correlation in atoms, molecules, and solids by the spin-density-functional formalism , 1976 .

[2]  B. Alder,et al.  THE GROUND STATE OF THE ELECTRON GAS BY A STOCHASTIC METHOD , 2010 .

[3]  A. Becke Numerical Hartree-Fock-Slater Calculations on Diatomic-Molecules - Addendum , 1983 .

[4]  J. Connolly,et al.  On first‐row diatomic molecules and local density models , 1979 .

[5]  W. Hehre,et al.  Molecular orbital theory of the properties of inorganic and organometallic compounds. 3. STO‐3G basis sets for first‐ and second‐row transition metals , 1983 .

[6]  Charlotte Froese Fischer,et al.  The Hartree-Fock method for atoms: A numerical approach , 1977 .

[7]  S. Huzinaga,et al.  A systematic preparation of new contracted Gaussian‐ type orbital sets. VII. MINI‐3, MINI‐4, MIDI‐3, and MIDI‐4 sets for transition metal atoms , 1981 .

[8]  R. P. Messmer,et al.  A comparison of Xα LCAO and Xα scattered wave results for A Ni4 cluster , 1982 .

[9]  D. Salahub,et al.  LCAO local-spin-density and Xα calculations for Cr2 and Mo2 , 1984 .

[10]  A. Becke Numerical Hartree-Fock-Slater Calculations on Diatomic Molecules , 1982 .

[11]  A. Zunger,et al.  Self-interaction correction to density-functional approximations for many-electron systems , 1981 .

[12]  S. Huzinaga,et al.  A new minimal Gaussian basis set for molecular calculations , 1980 .

[13]  J. A. Alonso,et al.  Nonlocal approximation to the exchange potential and kinetic energy of an inhomogeneous electron gas , 1978 .

[14]  R. Gáspár,et al.  Über eine Approximation des Hartree-Fockschen Potentials Durch eine Universelle Potentialfunktion , 1954 .

[15]  A. Veillard,et al.  Gaussian basis sets for molecular wavefunctions containing third-row atoms , 1971 .

[16]  Michael J. Frisch,et al.  Self‐consistent molecular orbital methods 25. Supplementary functions for Gaussian basis sets , 1984 .

[17]  P. Jeffrey Hay,et al.  Gaussian basis sets for molecular calculations. The representation of 3d orbitals in transition‐metal atoms , 1977 .

[18]  E. Radzio-Andzelm,et al.  Compact contracted Gaussian‐type basis sets for halogen atoms. Basis‐set superposition effects on molecular properties , 1984 .

[19]  B. Delley,et al.  Binding energy and electronic structure of small copper particles , 1983 .

[20]  W. Kohn,et al.  Self-Consistent Equations Including Exchange and Correlation Effects , 1965 .

[21]  S. H. Vosko,et al.  Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis , 1980 .

[22]  J. Janak,et al.  Ground-state thermomechanical properties of some cubic elements in the local-density formalism , 1975 .

[23]  John R. Sabin,et al.  On some approximations in applications of Xα theory , 1979 .

[24]  A. Wachters,et al.  Gaussian Basis Set for Molecular Wavefunctions Containing Third‐Row Atoms , 1970 .

[25]  E. Miyoshi,et al.  Electronic structure of small copper clusters. I , 1982 .

[26]  B. Dunlap Xα,Cr2, and the symmetry dilemma , 1983 .

[27]  J. Pople,et al.  Self‐Consistent Molecular‐Orbital Methods. I. Use of Gaussian Expansions of Slater‐Type Atomic Orbitals , 1969 .

[28]  S. Huzinaga,et al.  Basis sets for molecular calculations , 1985 .

[29]  R. Raffenetti,et al.  General contraction of Gaussian atomic orbitals: Core, valence, polarization, and diffuse basis sets; Molecular integral evaluation , 1973 .

[30]  S. Huzinaga,et al.  A systematic preparation of new contracted Gaussian type orbital set. I. Transition metal atoms from Sc to Zn , 1979 .