Unified analysis of energy detection of unknown signals over generalized fading channels

Reliable spectrum sensing is the very task upon which the entire operation of cognitive radio rests. Blind sensing of spectral-holes using a radiometer (energy detectors) is one of the solutions that have been proposed for enabling opportunistic spectrum access. This article revisits the problem of energy detection of an unknown deterministic signal over a myriad of fading environments. Specifically, a new approach (based on the canonical series representations of the generalized Marcum Q-function of real order in conjunction with the derivatives of the moment generating function of signal-to-noise ratio) is proposed to analyze the performance of maximal-ratio combining (MRC) and square-law combining (SLC) energy detectors with independent but non-identically distributed (i.n.d) fading statistics, including Rice and mixed-fading channels. Our analytical framework is also capable of treating the Nakagami-m channels with non-integer fading severity indices as well as halfodd integer values for the time-bandwidth product u. Many of these cases were either intractable with the classical probability density function/contour integral approaches, or that heretofore had resisted simple/computationally efficient solutions. Selected numerical results are also provided for the receiver operating characteristic (ROC) of MRC and SLC diversity energy detectors over Rice and Nakagami-m channels.

[1]  Mohamed-Slim Alouini,et al.  On the Energy Detection of Unknown Signals Over Fading Channels , 2007, IEEE Transactions on Communications.

[2]  J. I. Mararm,et al.  Energy Detection of Unknown Deterministic Signals , 2022 .

[3]  R. M. A. P. Rajatheva,et al.  Analysis of Equal Gain Combining in Energy Detection for Cognitive Radio over Nakagami Channels , 2008, IEEE GLOBECOM 2008 - 2008 IEEE Global Telecommunications Conference.

[4]  Joseph Lipka,et al.  A Table of Integrals , 2010 .

[5]  Vladimir I. Kostylev,et al.  Energy detection of a signal with random amplitude , 2002, 2002 IEEE International Conference on Communications. Conference Proceedings. ICC 2002 (Cat. No.02CH37333).

[6]  R. M. A. P. Rajatheva,et al.  On the energy detection of unknown deterministic signal over Nakagami channelswith selection combining , 2009, 2009 Canadian Conference on Electrical and Computer Engineering.

[7]  C. Tellambura,et al.  Unified Approach for Energy Detection of Unknown Deterministic Signal in Cognitive Radio Over Fading Channels , 2009, 2009 IEEE International Conference on Communications Workshops.

[8]  Klong Luang,et al.  Analysis of Diversity Combining in Energy Detection for Cognitive Radio over Nakagami Channels , 2009 .

[9]  George M. Dillard,et al.  Recursive Computation of the Generalized Q Function , 1973, IEEE Transactions on Aerospace and Electronic Systems.