A space-based decametric wavelength radio telescope concept

This paper reports a design study for a space-based decametric wavelength telescope. While not a new concept, this design study focused on many of the operational aspects that would be required for an actual mission. This design optimized the number of spacecraft to insure good visibility of approx. 80% of the radio galaxies– the primary science target for the mission. A 5,000 km lunar orbit was selected to guarantee minimal gravitational perturbations from Earth and lower radio interference. Optimal schemes for data downlink, spacecraft ranging, and power consumption were identified. An optimal mission duration of 1 year was chosen based on science goals, payload complexity, and other factors. Finally, preliminary simulations showing image reconstruction were conducted to confirm viability of the mission. This work is intended to show the viability and science benefits of conducting multi-spacecraft networked radio astronomy missions in the next few years.

[1]  M. L. Kaiser,et al.  The Cassini Radio and Plasma Wave Investigation , 2004 .

[2]  M. Hardcastle,et al.  A representative survey of the dynamics and energetics of FRII radio galaxies , 2017, 1701.05612.

[3]  Rob Sherwood,et al.  Using Iterative Repair to Improve the Responsiveness of Planning and Scheduling , 2000, AIPS.

[4]  Rob Sherwood,et al.  ASPEN-Automated Planning and Scheduling for Space Mission Operation , 2000 .

[5]  Martin Ryle,et al.  The Synthesis of Large Radio Telescopes , 1960 .

[6]  Boaz Porat,et al.  A course in digital signal processing , 1996 .

[7]  D. E. Harris From Clark Lake to Chandra: Closing in on the Low End of the Relativistic Electron Spectra in Extragalactic Sources , 2004 .

[8]  A. R. Whitney,et al.  The Murchison Widefield Array: The Square Kilometre Array Precursor at Low Radio Frequencies , 2012, Publications of the Astronomical Society of Australia.

[9]  Mauricio Solar,et al.  Astronomical data analysis software and systems , 2018, Astron. Comput..

[10]  Albert-Jan Boonstra,et al.  Radio astronomy with the European Lunar Lander: Opening up the last unexplored frequency regime , 2012, 1209.3033.

[11]  G. R. Huguenin,et al.  A Synthetic Aperture Approach to Space-Based Radio Telescopes , 1967 .

[12]  Namir E. Kassim,et al.  Low Frequency Astrophysics from Space , 1990 .

[13]  David Bell,et al.  Multiuser Receiver Architectures for Space Modems , 2014 .

[14]  J. H. Blythe,et al.  A New Type of Pencil Beam Aerial for Radio Astronomy , 1957 .

[15]  G. Swarup Giant metrewave radio telescope (GMRT) - Scientific objectives and design aspects , 1990 .

[16]  M. L. Kaiser,et al.  Scientific instrumentation of the Radio-Astronomy-Explorer-2 satellite , 1975 .

[17]  Jeff B. Berner,et al.  Range Measurement as Practiced in the Deep Space Network , 2007, Proceedings of the IEEE.

[18]  L. McCready,et al.  Radio-Frequency Energy from the Sun , 1946, Nature.

[19]  Dayton L. Jones,et al.  Feasibility analysis of XSOLANTRA: A mission concept to detect exoplanets with an array of CubeSats , 2013, 2013 IEEE Aerospace Conference.

[20]  M. Ryle,et al.  Solar Radiation on 175 Mc./s. , 1946, Nature.

[21]  D. Oberoi,et al.  A new design for a very low frequency spaceborne radio interferometer , 2003, astro-ph/0312171.

[22]  M. C. Toribio,et al.  LOFAR imaging of Cygnus A - direct detection of a turnover in the hotspot radio spectra , 2016, 2103.16961.

[23]  M. P. van Haarlem,et al.  LOFAR: The Low Frequency Array , 2005 .

[24]  G. Swenson,et al.  Interferometry and Synthesis in Radio Astronomy , 1986 .

[25]  C. Perche,et al.  WAVES: The radio and plasma wave investigation on the wind spacecraft , 1995 .

[26]  E. Greisen,et al.  The 74 MHz System on the Very Large Array , 2007, 0704.3088.

[27]  Ronald J. Allen,et al.  The ALFA medium explorer mission , 2000 .

[28]  S. Ananthakrishnan The Giant Meterwave Radio Telescope / GMRT , 1995 .

[29]  M. Maksimović,et al.  On the antenna calibration of space radio instruments using the galactic background: General formulas and application to STEREO/WAVES , 2011 .

[30]  D. Gurnett,et al.  Satellite interferometric measurements of auroral kilometric radiation , 1986 .

[31]  S. Ellingson Sensitivity of Antenna Arrays for Long-Wavelength Radio Astronomy , 2010, IEEE Transactions on Antennas and Propagation.

[32]  P. S. Bunclark,et al.  Astronomical Data Analysis Software and Systems , 2008 .

[33]  B. R. Barsdell,et al.  Digital Signal Processing using Stream High Performance Computing: A 512-input Broadband Correlator for Radio Astronomy , 2014, 1411.3751.

[34]  G. Reber,et al.  Cosmic radio‐frequency radiation near one megacycle , 1956 .

[35]  Baptiste Cecconi,et al.  NOIRE study report: Towards a low frequency radio interferometer in space , 2017, 2018 IEEE Aerospace Conference.

[36]  Tao An,et al.  Discovering the sky at the Longest Wavelengths (DSL) , 2016, 2016 IEEE Aerospace Conference.

[37]  Carl L. Siefring,et al.  The e-POP Radio Receiver Instrument on CASSIOPE , 2015 .

[38]  J. L. Pawsey,et al.  Solar radiation at radio frequencies and its relation to sunspots , 1947, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[39]  Mllls The Radio Brightness Distributions over Four Discrete Sources of Cosmic Noise , 1953 .

[40]  M. Mendillo,et al.  A 1.6 MHz survey of the galactic background radio emission , 1987 .

[41]  Jack O. Burns,et al.  Directions for space‐based low frequency radio astronomy: 1. System considerations , 1997 .

[42]  C. Perche,et al.  Tool kit for antennae and thermal noise near the plasma frequency , 1989 .

[43]  H. Cane,et al.  Spectra of the non-thermal radio radiation from the galactic polar regions , 1979 .

[44]  Thomas A. Clark,et al.  The spectrum of the cosmic radio background between 0.4 and 6.5 MHz. , 1969 .

[45]  Robert A. Shaw,et al.  Astronomical data analysis software and systems IV : meeting held at Baltimore, Maryland, 25-28 September 1994 , 1995 .

[46]  Kurt W. Weiler,et al.  Radio astronomy at long wavelengths , 2000 .

[47]  N. K. Sharykin,et al.  Decametric survey of discrete sources in the northern sky , 1978 .

[48]  C. H. Acton,et al.  Ancillary data services of NASA's Navigation and Ancillary Information Facility , 1996 .

[49]  M. Longair,et al.  Bright radio sources at 178 MHz: flux densities, optical identifications and the cosmological evolution of powerful radio galaxies , 1983 .

[50]  N. Kassim,et al.  Directions for Space‐Based Low‐Frequency Radio Astronomy: 2. Telescopes , 1997 .

[51]  J. Cordes Low frequency interstellar scattering and pulsar observations , 1990 .

[52]  P. S. Ray,et al.  The LWA1 Radio Telescope , 2012, IEEE Transactions on Antennas and Propagation.

[53]  Thomas H. Zurbuchen,et al.  Achieving Science with CubeSats: Thinking Inside the Box , 2016 .

[54]  D. Gurnett,et al.  Spatial and temporal properties of AKR burst emission derived from Cluster WBD VLBI studies , 2004 .

[55]  Yihua Yan,et al.  Antenna design and implementation for the future space Ultra-Long wavelength radio telescope , 2018, 1802.07640.

[56]  John Steeves,et al.  Small Satellites: A Revolution in Space Science , 2014 .

[57]  Mark Bentum,et al.  Orbiting Low Frequency Array for radio astronomy , 2011, 2011 Aerospace Conference.

[58]  C. A. Meetre,et al.  S/WAVES: The Radio and Plasma Wave Investigation on the STEREO Mission , 2008 .

[59]  Martin Ryle,et al.  A Preliminary Survey of the Radio Stars in the Northern Hemisphere , 1950 .

[60]  Manfred Sampl,et al.  The Juno Waves Investigation , 2017 .