Adaptive backstepping control and synchronization of a modified and chaotic Van der Pol-Duffing oscillator

In this paper, we propose a backstepping approach for the synchronization and control of modified Van-der Pol Duffing oscillator circuits. The method is such that one controller function that depends essentially on available circuit parameters that is sufficient to drive the two coupled circuits to a synchronized state as well achieve the global stabilization of the system to its regular dynamics. Numerical simulations are given to demonstrate the effectiveness of the technique.

[1]  Ljupco Kocarev,et al.  General approach for chaotic synchronization with applications to communication. , 1995, Physical review letters.

[2]  Paul Woafo,et al.  Synchronizing modified van der Pol–Duffing oscillators with offset terms using observer design: application to secure communications , 2007 .

[3]  U. Vincent,et al.  Phase synchronization in unidirectionally coupled chaotic ratchets. , 2004, Chaos.

[4]  Uchechukwu E. Vincent,et al.  Synchronization of Rikitake chaotic attractor using active control , 2005 .

[5]  Zhang Hao,et al.  Generalized synchronization of hyperchaos and chaos using active backstepping design , 2005 .

[6]  P. Woafo,et al.  Adaptive synchronization of a modified and uncertain chaotic Van der Pol-Duffing oscillator based on parameter identification , 2005 .

[7]  Jiye Zhang,et al.  Synchronizing chaotic systems using backstepping design , 2003 .

[8]  Carroll,et al.  Synchronization in chaotic systems. , 1990, Physical review letters.

[9]  Alan V. Oppenheim,et al.  Circuit implementation of synchronized chaos with applications to communications. , 1993, Physical review letters.

[10]  Ming-Jyi Jang,et al.  Sliding Mode Control of Chaos in the cubic Chua's Circuit System , 2002, Int. J. Bifurc. Chaos.

[11]  Yao-Chen Hung,et al.  Synchronization of two different systems by using generalized active control , 2002 .

[12]  Kim-Fung Man,et al.  Online Secure Chatting System Using Discrete Chaotic Map , 2004, Int. J. Bifurc. Chaos.

[13]  M. Lakshmanan,et al.  Chaos in Nonlinear Oscillators: Controlling and Synchronization , 1996 .

[14]  Er-Wei Bai,et al.  Synchronization of two Lorenz systems using active control , 1997 .

[15]  Y. Kuramoto,et al.  Dephasing and bursting in coupled neural oscillators. , 1995, Physical review letters.

[16]  M. Yassen Controlling, synchronization and tracking chaotic Liu system using active backstepping design , 2007 .