Kinetic models in industrial biotechnology - Improving cell factory performance.

An increasing number of industrial bioprocesses capitalize on living cells by using them as cell factories that convert sugars into chemicals. These processes range from the production of bulk chemicals in yeasts and bacteria to the synthesis of therapeutic proteins in mammalian cell lines. One of the tools in the continuous search for improved performance of such production systems is the development and application of mathematical models. To be of value for industrial biotechnology, mathematical models should be able to assist in the rational design of cell factory properties or in the production processes in which they are utilized. Kinetic models are particularly suitable towards this end because they are capable of representing the complex biochemistry of cells in a more complete way compared to most other types of models. They can, at least in principle, be used to in detail understand, predict, and evaluate the effects of adding, removing, or modifying molecular components of a cell factory and for supporting the design of the bioreactor or fermentation process. However, several challenges still remain before kinetic modeling will reach the degree of maturity required for routine application in industry. Here we review the current status of kinetic cell factory modeling. Emphasis is on modeling methodology concepts, including model network structure, kinetic rate expressions, parameter estimation, optimization methods, identifiability analysis, model reduction, and model validation, but several applications of kinetic models for the improvement of cell factories are also discussed.

[1]  中尾 光輝,et al.  KEGG(Kyoto Encyclopedia of Genes and Genomes)〔和文〕 (特集 ゲノム医学の現在と未来--基礎と臨床) -- (データベース) , 2000 .

[2]  A. Jazwinski Stochastic Processes and Filtering Theory , 1970 .

[3]  Dong-Yup Lee,et al.  Modeling and optimization of a multi-product biosynthesis factory for multiple objectives. , 2010, Metabolic engineering.

[4]  J. Nielsen,et al.  Metabolic engineering: techniques for analysis of targets for genetic manipulations. , 1998, Biotechnology and bioengineering.

[5]  Mikael Sunnåker,et al.  Zooming of states and parameters using a lumping approach including back-translation , 2010, BMC Systems Biology.

[6]  Jacob Roll,et al.  Systems biology: model based evaluation and comparison of potential explanations for given biological data , 2009, The FEBS journal.

[7]  Jörg Stelling,et al.  Systems analysis of cellular networks under uncertainty , 2009, FEBS letters.

[8]  H. Budman,et al.  Metabolic flux-based modeling of mAb production during batch and fed-batch operations , 2009, Bioprocess and biosystems engineering.

[9]  Nicolette Meshkat,et al.  Finding identifiable parameter combinations in nonlinear ODE models and the rational reparameterization of their input-output equations. , 2011, Mathematical biosciences.

[10]  Eberhard O Voit,et al.  Yield optimization of regulated metabolic systems using deterministic branch‐and‐reduce methods , 2008, Biotechnology and bioengineering.

[11]  D. Gillespie A General Method for Numerically Simulating the Stochastic Time Evolution of Coupled Chemical Reactions , 1976 .

[12]  Andreas Zell,et al.  Modeling metabolic networks in C . glutamicum : a comparison of rate laws in combination with various parameter optimization strategies , 2009 .

[13]  N. Volk,et al.  Model-based optimization of viral capsid protein production in fed-batch culture of recombinant Escherichia coli , 2003, Bioprocess and biosystems engineering.

[14]  Renate Kania,et al.  Storing and Annotating of Kinetic Data , 2007, Silico Biol..

[15]  Hiroyuki Kurata,et al.  Computer-aided rational design of the phosphotransferase system for enhanced glucose uptake in Escherichia coli , 2008 .

[16]  Ralf Takors,et al.  The identification of enzyme targets for the optimization of a valine producing Corynebacterium glutamicum strain using a kinetic model , 2009, Biotechnology progress.

[17]  J E Bailey,et al.  A mathematical model of N-linked glycoform biosynthesis. , 1997, Biotechnology and bioengineering.

[18]  S. Ghosh,et al.  Emergent bistability: Effects of additive and multiplicative noise , 2011, The European Physical Journal E.

[19]  Lei Liu,et al.  An improved kinetic model for the acetone-butanol-ethanol pathway of Clostridium acetobutylicum and model-based perturbation analysis , 2011, BMC Systems Biology.

[20]  M. Savageau Biochemical systems analysis. II. The steady-state solutions for an n-pool system using a power-law approximation. , 1969, Journal of theoretical biology.

[21]  広野 修一 Computer-Aided Rational Drug Design 入門(21 世紀の創薬手法) , 2001 .

[22]  D. Sherrington Stochastic Processes in Physics and Chemistry , 1983 .

[23]  Stephen J. Wright,et al.  Numerical Optimization , 2018, Fundamental Statistical Inference.

[24]  William W. Chen,et al.  Classic and contemporary approaches to modeling biochemical reactions. , 2010, Genes & development.

[25]  Mikael Sunnåker,et al.  Investigations of a compartmental model for leucine kinetics using non-linear mixed effects models with ordinary and stochastic differential equations. , 2011, Mathematical medicine and biology : a journal of the IMA.

[26]  Ralf Takors,et al.  Sensitivity analysis for the reduction of complex metabolism models , 2004 .

[27]  Jennifer Prestigiacomo,et al.  A Hybrid Approach , 2018, How High the Sky?.

[28]  Maksat Ashyraliyev,et al.  Systems biology: parameter estimation for biochemical models , 2009, The FEBS journal.

[29]  Bernd Freisleben,et al.  Investigating the dynamic behavior of biochemical networks using model families , 2005, Bioinform..

[30]  David E Block,et al.  A dynamic, genome-scale flux model of Lactococcus lactis to increase specific recombinant protein expression. , 2009, Metabolic engineering.

[31]  Igor Goryanin,et al.  Kinetic modelling in systems biology , 2008 .

[32]  D. Petranovic,et al.  Genome-Scale Modeling of the Protein Secretory Machinery in Yeast , 2013, PloS one.

[33]  Gonzalo Guillén-Gosálbez,et al.  Steady-state global optimization of metabolic non-linear dynamic models through recasting into power-law canonical models , 2011, BMC Systems Biology.

[34]  Edda Klipp,et al.  Biochemical network models simplified by balanced truncation , 2005, The FEBS journal.

[35]  Wei-Shou Hu,et al.  Systems Analysis of N-Glycan Processing in Mammalian Cells , 2007, PloS one.

[36]  Ryan Nolan,et al.  Dynamic model of CHO cell metabolism. , 2011, Metabolic engineering.

[37]  N. Torres,et al.  Metabolism of citric acid production by Aspergillus niger: model definition, steady-state analysis and constrained optimization of citric acid production rate. , 2000, Biotechnology and bioengineering.

[38]  Tina Toni,et al.  The ABC of reverse engineering biological signalling systems. , 2009, Molecular bioSystems.

[39]  Zhike Zi,et al.  SBML-PET: a Systems Biology Markup Language-based parameter estimation tool , 2006, Bioinform..

[40]  A. Minton,et al.  How can biochemical reactions within cells differ from those in test tubes? , 2006, Journal of Cell Science.

[41]  Gunnar Cedersund,et al.  Reduction of a biochemical model with preservation of its basic dynamic properties , 2006, The FEBS journal.

[42]  Ursula Klingmüller,et al.  Structural and practical identifiability analysis of partially observed dynamical models by exploiting the profile likelihood , 2009, Bioinform..

[43]  Mats Jirstrand,et al.  Modeling the effect of Kv1.5 block on the canine action potential. , 2010, Biophysical journal.

[44]  S. Lee,et al.  Fed‐batch culture of Escherichia coli for L‐valine production based on in silico flux response analysis , 2011, Biotechnology and bioengineering.

[45]  Debasis Sarkar,et al.  Optimisation of fed-batch bioreactors using genetic algorithms: Two control variables , 2003 .

[46]  W A Weigand,et al.  Framework for online optimization of recombinant protein expression in high-cell-density Escherichia coli cultures using GFP-fusion monitoring. , 2000, Biotechnology and bioengineering.

[47]  Keng C. Soh,et al.  Towards kinetic modeling of genome-scale metabolic networks without sacrificing stoichiometric, thermodynamic and physiological constraints. , 2013, Biotechnology journal.

[48]  Hiroshi Miyano,et al.  Dynamic modeling of Escherichia coli metabolic and regulatory systems for amino-acid production. , 2010, Journal of biotechnology.

[49]  Kuninori Togai Kinetic modeling and sensitivity analysis of plasma-assisted combustion , 2015 .

[50]  Rudiyanto Gunawan,et al.  Parameter identifiability of power-law biochemical system models. , 2010, Journal of biotechnology.

[51]  Judith B. Zaugg,et al.  Bacterial adaptation through distributed sensing of metabolic fluxes , 2010, Molecular systems biology.

[52]  M. D. de Groot,et al.  Metabolic Control Analysis of Xylose Catabolism in Aspergillus , 2008, Biotechnology progress (Print).

[53]  Jun Chen,et al.  Lithium-air batteries: Something from nothing. , 2012, Nature chemistry.

[54]  Jens Nielsen,et al.  Impact of systems biology on metabolic engineering of Saccharomyces cerevisiae. , 2008, FEMS yeast research.

[55]  Matthias Heinemann,et al.  Single cell metabolomics. , 2011, Current opinion in biotechnology.

[56]  B. Palsson,et al.  Formulating genome-scale kinetic models in the post-genome era , 2008, Molecular systems biology.

[57]  J. Förster,et al.  In silico aided metabolic engineering of Saccharomyces cerevisiae for improved bioethanol production. , 2006, Metabolic engineering.

[58]  Edda Klipp,et al.  Systems Biology , 1994 .

[59]  Fabian J. Theis,et al.  presence of non-identifiability methodology: a study for inference in the Joining forces of Bayesian and frequentist , 2013 .

[60]  K. Shimizu,et al.  Metabolic control analysis for lysine synthesis using Corynebacterium glutamicum and experimental verification. , 2000, Journal of bioscience and bioengineering.

[61]  Erwin P. Gianchandani,et al.  Correction: Dynamic Analysis of Integrated Signaling, Metabolic, and Regulatory Networks , 2008, PLoS Computational Biology.

[62]  Mustafa Türker,et al.  On-line evolutionary optimization of an industrial fed-batch yeast fermentation process. , 2009, ISA transactions.

[63]  D. Marquardt An Algorithm for Least-Squares Estimation of Nonlinear Parameters , 1963 .

[64]  Erwin P. Gianchandani,et al.  Dynamic Analysis of Integrated Signaling, Metabolic, and Regulatory Networks , 2008, PLoS Comput. Biol..

[65]  D. Broomhead,et al.  Something from nothing − bridging the gap between constraint‐based and kinetic modelling , 2007, The FEBS journal.

[66]  Andre Walker,et al.  Optimization of a glycoengineered Pichia pastoris cultivation process for commercial antibody production , 2011, Biotechnology progress.

[67]  Katherine C. Chen,et al.  Sniffers, buzzers, toggles and blinkers: dynamics of regulatory and signaling pathways in the cell. , 2003, Current opinion in cell biology.

[68]  M. Mavrovouniotis,et al.  Simplification of Mathematical Models of Chemical Reaction Systems. , 1998, Chemical reviews.

[69]  Ramon Gonzalez,et al.  Metabolic Control Analysis of Monoclonal Antibody Synthesis , 2001, Biotechnology progress (Print).

[70]  Zizhuo Xing,et al.  Modeling kinetics of a large‐scale fed‐batch CHO cell culture by Markov chain Monte Carlo method , 2010, Biotechnology progress.

[71]  J. Stelling,et al.  Ensemble modeling for analysis of cell signaling dynamics , 2007, Nature Biotechnology.

[72]  D. Dimasi,et al.  An Energetically Structured Model of Mammalian Cell Metabolism. 1. Model Development and Application to Steady‐State Hybridoma Cell Growth in Continuous Culture , 1995, Biotechnology progress.

[73]  Manuel Cánovas,et al.  Modeling, optimization and experimental assessment of continuous L-(-)-carnitine production by Escherichia coli cultures. , 2002, Biotechnology and bioengineering.

[74]  James C Liao,et al.  Ensemble modeling for strain development of L-lysine-producing Escherichia coli. , 2009, Metabolic engineering.

[75]  N. Hansen,et al.  Markov Chain Analysis of Cumulative Step-Size Adaptation on a Linear Constrained Problem , 2015, Evolutionary Computation.

[76]  Eberhard O. Voit,et al.  Kinetic modeling using S-systems and lin-log approaches , 2007 .

[77]  Keng Cher Soh Computational Studies on Cellular Bioenergetics , 2013 .

[78]  H. C. Lim,et al.  Kinetics of l-lysine fermentation: a continuous culture model incorporating oxygen uptake rate , 2003, Applied Microbiology and Biotechnology.

[79]  V. Hatzimanikatis,et al.  Metabolic engineering under uncertainty--II: analysis of yeast metabolism. , 2006, Metabolic engineering.

[80]  Frédéric Monot,et al.  Comparative kinetic analysis of two fungal β-glucosidases , 2010, Biotechnology for biofuels.

[81]  Annette M. Molinaro,et al.  Prediction error estimation: a comparison of resampling methods , 2005, Bioinform..

[82]  J A Asenjo,et al.  Continuous modeling of metabolic networks with gene regulation in yeast and in vivo determination of rate parameters , 2012, Biotechnology and bioengineering.

[83]  Keng C. Soh,et al.  From network models to network responses: integration of thermodynamic and kinetic properties of yeast genome-scale metabolic networks. , 2012, FEMS yeast research.

[84]  Wolfgang Wiechert,et al.  A disposable picolitre bioreactor for cultivation and investigation of industrially relevant bacteria on the single cell level. , 2012, Lab on a chip.

[85]  Maria Pia Saccomani,et al.  Examples of testing global identifiability of biological and biomedical models with the DAISY software , 2010, Comput. Biol. Medicine.

[86]  Wolfgang Wiechert,et al.  Visualizing regulatory interactions in metabolic networks , 2007, BMC Systems Biology.

[87]  E. Klipp,et al.  Integrative model of the response of yeast to osmotic shock , 2005, Nature Biotechnology.

[88]  M. Betenbaugh,et al.  A mathematical model of N-linked glycosylation. , 2005, Biotechnology and bioengineering.

[89]  Eva Balsa-Canto,et al.  Global optimization in systems biology: stochastic methods and their applications. , 2012, Advances in experimental medicine and biology.

[90]  Sang Yup Lee,et al.  Genome-scale metabolic model of methylotrophic yeast Pichia pastoris and its use for in silico analysis of heterologous protein production. , 2010, Biotechnology journal.

[91]  D. Fell Metabolic control analysis: a survey of its theoretical and experimental development. , 1992, The Biochemical journal.

[92]  A Raue,et al.  Identifiability and observability analysis for experimental design in nonlinear dynamical models. , 2010, Chaos.

[93]  D. Gillespie Approximate accelerated stochastic simulation of chemically reacting systems , 2001 .

[94]  J. Heijnen,et al.  The mathematics of metabolic control analysis revisited. , 2002, Metabolic engineering.

[95]  Mats Jirstrand,et al.  Biochemical modeling with Systems Biology Graphical Notation. , 2010, Drug discovery today.

[96]  Jens Timmer,et al.  Dynamical modeling and multi-experiment fitting with PottersWheel , 2008, Bioinform..

[97]  Henning Schmidt,et al.  Complexity reduction of biochemical rate expressions , 2008, Bioinform..

[98]  Huimin Zhao,et al.  Engineering microbial factories for synthesis of value-added products , 2011, Journal of Industrial Microbiology & Biotechnology.

[99]  Antje Chang,et al.  BRENDA, the enzyme information system in 2011 , 2010, Nucleic Acids Res..

[100]  D A Fell,et al.  Control of the threonine-synthesis pathway in Escherichia coli: a theoretical and experimental approach. , 2001, The Biochemical journal.

[101]  C Emborg,et al.  Modeling the growth and proteinase A production in continuous cultures of recombinant Saccharomyces cerevisiae. , 1997, Biotechnology and bioengineering.

[102]  I. Chou,et al.  Recent developments in parameter estimation and structure identification of biochemical and genomic systems. , 2009, Mathematical biosciences.

[103]  Edda Klipp,et al.  Automatically generated model of a metabolic network. , 2007, Genome informatics. International Conference on Genome Informatics.

[104]  Philippe Bogaerts,et al.  Dynamic modeling of complex biological systems: a link between metabolic and macroscopic description. , 2005, Mathematical biosciences.

[105]  D. Kell,et al.  Schemes of flux control in a model of Saccharomyces cerevisiae glycolysis. , 2002, European journal of biochemistry.

[106]  Albert Goldbeter,et al.  Stochastic modelling of nucleocytoplasmic oscillations of the transcription factor Msn2 in yeast , 2008, Journal of The Royal Society Interface.

[107]  U. Sauer,et al.  Systems biology of microbial metabolism. , 2010, Current opinion in microbiology.

[108]  Nikolaos V. Sahinidis,et al.  Optimization of metabolic pathways under stability considerations , 2005, Comput. Chem. Eng..

[109]  Lennart Ljung,et al.  On global identifiability for arbitrary model parametrizations , 1994, Autom..

[110]  Xiao-Jiang Feng,et al.  Diverse metabolic model parameters generate similar methionine cycle dynamics. , 2008, Journal of theoretical biology.

[111]  F. Bruggeman,et al.  The nature of systems biology. , 2007, Trends in microbiology.

[112]  Rodica Curtu,et al.  Small-scale modeling approach and circuit wiring of the unfolded protein response in mammalian cells. , 2010, Advances in experimental medicine and biology.

[113]  H. Kacser,et al.  The control of flux. , 1995, Biochemical Society transactions.

[114]  Jens Nielsen,et al.  Metabolic control analysis of the penicillin biosynthetic pathway: the influence of the lld-ACV:bisACV ratio on the flux control , 2004, Antonie van Leeuwenhoek.

[115]  F. Doyle,et al.  Dynamic flux balance analysis of diauxic growth in Escherichia coli. , 2002, Biophysical journal.

[116]  Michiel Kleerebezem,et al.  Metabolic engineering of lactic acid bacteria, the combined approach: kinetic modelling, metabolic control and experimental analysis. , 2002, Microbiology.

[117]  Mark K Transtrum,et al.  Why are nonlinear fits to data so challenging? , 2009, Physical review letters.

[118]  R. Jungers,et al.  Dynamic metabolic models of CHO cell cultures through minimal sets of elementary flux modes. , 2013, Journal of biotechnology.

[119]  Johan Karlsson,et al.  An Efficient Method for Structural Identifiability Analysis of Large Dynamic Systems , 2012 .

[120]  J. Paulsson Summing up the noise in gene networks , 2004, Nature.

[121]  N. Torres,et al.  Optimization of Tryptophan Production in Bacteria. Design of a Strategy for Genetic Manipulation of the Tryptophan Operon for Tryptophan Flux Maximization , 2000, Biotechnology progress.

[122]  John A. Nelder,et al.  A Simplex Method for Function Minimization , 1965, Comput. J..

[123]  N. Kampen,et al.  Stochastic processes in physics and chemistry , 1981 .

[124]  D. Gillespie The chemical Langevin equation , 2000 .

[125]  I. Nookaew,et al.  Fifteen years of large scale metabolic modeling of yeast: developments and impacts. , 2012, Biotechnology advances.

[126]  Mikael Sunnåker,et al.  A method for zooming of nonlinear models of biochemical systems , 2011, BMC Systems Biology.

[127]  Eva Balsa-Canto,et al.  AMIGO, a toolbox for advanced model identification in systems biology using global optimization , 2011, Bioinform..

[128]  Natal A. W. van Riel,et al.  Dynamic modelling and analysis of biochemical networks: mechanism-based models and model-based experiments , 2006, Briefings Bioinform..

[129]  D. Fell,et al.  Metabolic control analysis. The effects of high enzyme concentrations. , 1990, European journal of biochemistry.

[130]  Julio R. Banga,et al.  Novel metaheuristic for parameter estimation in nonlinear dynamic biological systems , 2006, BMC Bioinformatics.

[131]  J. Nielsen,et al.  Mathematical models of cell factories: moving towards the core of industrial biotechnology , 2011, Microbial biotechnology.

[132]  J. Timmer,et al.  Addressing parameter identifiability by model-based experimentation. , 2011, IET systems biology.

[133]  Irving J. Dunn,et al.  MODELLING OF SUSTAINED OSCILLATIONS OBSERVED IN CONTINUOUS CULTURE OF SACCHAROMYCES CEREVISIAE , 1983 .

[134]  Sven Sahle,et al.  Computational modeling of biochemical networks using COPASI. , 2009, Methods in molecular biology.

[135]  Neil Swainston,et al.  Towards a genome-scale kinetic model of cellular metabolism , 2010, BMC Systems Biology.

[136]  J Christopher Love,et al.  Integrated single-cell analysis shows Pichia pastoris secretes protein stochastically. , 2010, Biotechnology and bioengineering.

[137]  Jerome T. Mettetal,et al.  The Frequency Dependence of Osmo-Adaptation in Saccharomyces cerevisiae , 2008, Science.

[138]  Lennart Ljung,et al.  Modeling Of Dynamic Systems , 1994 .

[139]  B. Palsson,et al.  k-Cone analysis: determining all candidate values for kinetic parameters on a network scale. , 2005, Biophysical journal.

[140]  E. Klipp,et al.  Biochemical networks with uncertain parameters. , 2005, Systems biology.

[141]  Kyongbum Lee,et al.  Dynamic model for CHO cell engineering. , 2012, Journal of biotechnology.

[142]  Brigitte Gasser,et al.  Versatile modeling and optimization of fed batch processes for the production of secreted heterologous proteins with Pichia pastoris , 2006, Microbial cell factories.

[143]  Masahiro Okamoto,et al.  Kinetic modeling and sensitivity analysis of acetone-butanol-ethanol production. , 2007, Journal of biotechnology.

[144]  Mats Jirstrand,et al.  Systems biology Systems Biology Toolbox for MATLAB : a computational platform for research in systems biology , 2006 .

[145]  Reinhart Heinrich,et al.  A linear steady-state treatment of enzymatic chains. General properties, control and effector strength. , 1974, European journal of biochemistry.

[146]  Barbara M. Bakker,et al.  Can yeast glycolysis be understood in terms of in vitro kinetics of the constituent enzymes? Testing biochemistry. , 2000, European journal of biochemistry.

[147]  Barbara M. Bakker,et al.  Measuring enzyme activities under standardized in vivo‐like conditions for systems biology , 2010, The FEBS journal.

[148]  Edda Klipp,et al.  Modular rate laws for enzymatic reactions: thermodynamics, elasticities and implementation , 2010, Bioinform..

[149]  Gaudenz Danuser,et al.  Linking data to models: data regression , 2006, Nature Reviews Molecular Cell Biology.

[150]  Marianne Knarud Sagen From zero to hero : an analysis of the development of the international anti-corruption regime , 2005 .

[151]  Matthias Reuss,et al.  Optimal re-design of primary metabolism in Escherichia coli using linlog kinetics. , 2004, Metabolic engineering.

[152]  E. Voit,et al.  Challenges in lin-log modelling of glycolysis in Lactococcus lactis. , 2008, IET systems biology.

[153]  Vassily Hatzimanikatis,et al.  Metabolic engineering under uncertainty. I: framework development. , 2006, Metabolic engineering.

[154]  J Schaber,et al.  Nested uncertainties in biochemical models. , 2009, IET systems biology.

[155]  J. Heijnen,et al.  Dynamic simulation and metabolic re-design of a branched pathway using linlog kinetics. , 2003, Metabolic engineering.

[156]  Oliver Kotte,et al.  A divide-and-conquer approach to analyze underdetermined biochemical models , 2009, Bioinform..

[157]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[158]  Sarala M. Wimalaratne,et al.  The Systems Biology Graphical Notation , 2009, Nature Biotechnology.

[159]  Joseph Heijnen,et al.  Metabolic Control Analysis , 2009 .

[160]  J C Menezes,et al.  Mathematical modelling of industrial pilot-plant penicillin-G fed-batch fermentations. , 1994, Journal of chemical technology and biotechnology.

[161]  Andreas Kremling,et al.  A Quantitative Approach to Catabolite Repression in Escherichia coli* , 2006, Journal of Biological Chemistry.

[162]  J. Bailey,et al.  Effects of spatiotemporal variations on metabolic control: approximate analysis using (log)linear kinetic models. , 1997, Biotechnology and bioengineering.

[163]  Eva Balsa-Canto,et al.  Hybrid optimization method with general switching strategy for parameter estimation , 2008, BMC Systems Biology.

[164]  Jens Timmer,et al.  Joining forces of Bayesian and frequentist methodology: a study for inference in the presence of non-identifiability , 2012, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[165]  J. Schaber,et al.  Model-based inference of biochemical parameters and dynamic properties of microbial signal transduction networks. , 2011, Current opinion in biotechnology.

[166]  J. Hasty,et al.  Noise-based switches and amplifiers for gene expression. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[167]  G. Schwarz Estimating the Dimension of a Model , 1978 .

[168]  L. Finch A hybrid approach , 1998 .

[169]  James Kennedy,et al.  Particle swarm optimization , 2002, Proceedings of ICNN'95 - International Conference on Neural Networks.

[170]  M. Lidstrom,et al.  The role of physiological heterogeneity in microbial population behavior. , 2010, Nature chemical biology.

[171]  R. Bellman,et al.  On structural identifiability , 1970 .

[172]  Ljubisa Miskovic,et al.  Production of biofuels and biochemicals: in need of an ORACLE. , 2010, Trends in biotechnology.

[173]  Edda Klipp,et al.  Bringing metabolic networks to life: integration of kinetic, metabolic, and proteomic data , 2006, Theoretical Biology and Medical Modelling.

[174]  Hyohak Song,et al.  Genome-Based Metabolic Engineering of Mannheimia succiniciproducens for Succinic Acid Production , 2006, Applied and Environmental Microbiology.

[175]  Robert Hooke,et al.  `` Direct Search'' Solution of Numerical and Statistical Problems , 1961, JACM.

[176]  Ahmad A. Mannan,et al.  Modeling and simulation of the main metabolism in Escherichia coli and its several single-gene knockout mutants with experimental verification , 2010, Microbial cell factories.

[177]  Claudio Cobelli,et al.  Global identifiability of nonlinear models of biological systems , 2001, IEEE Transactions on Biomedical Engineering.

[178]  Carmen G. Moles,et al.  Parameter estimation in biochemical pathways: a comparison of global optimization methods. , 2003, Genome research.

[179]  Joakim Carlsson,et al.  A parameter estimation method for continuous time dynamical systems based on the unscented Kalman filter and maximum likelihood , 2011 .

[180]  Edda Klipp,et al.  A Quantitative Study of the Hog1 MAPK Response to Fluctuating Osmotic Stress in Saccharomyces cerevisiae , 2010, PloS one.

[181]  Chao Tang,et al.  Rationalizing translation attenuation in the network architecture of the unfolded protein response , 2008, Proceedings of the National Academy of Sciences.

[182]  Ralf Takors,et al.  Application of model discriminating experimental design for modeling and development of a fermentative fed-batch L-valine production process. , 2005, Biotechnology and bioengineering.

[183]  I. Birol,et al.  Metabolic control analysis under uncertainty: framework development and case studies. , 2004, Biophysical journal.

[184]  E. Martegani,et al.  Modeling and stochastic simulation of the Ras/cAMP/PKA pathway in the yeast Saccharomyces cerevisiae evidences a key regulatory function for intracellular guanine nucleotides pools. , 2008, Journal of biotechnology.

[185]  Hans V Westerhoff,et al.  Towards building the silicon cell: a modular approach. , 2006, Bio Systems.

[186]  F. Hynne,et al.  Full-scale model of glycolysis in Saccharomyces cerevisiae. , 2001, Biophysical chemistry.

[187]  Joseph A. C. Delaney Sensitivity analysis , 2018, The African Continental Free Trade Area: Economic and Distributional Effects.

[188]  Joseph J. Heijnen,et al.  A method for estimation of elasticities in metabolic networks using steady state and dynamic metabolomics data and linlog kinetics , 2006, BMC Bioinformatics.

[189]  Wolfgang Wiechert,et al.  Mechanistic pathway modeling for industrial biotechnology: challenging but worthwhile. , 2011, Current opinion in biotechnology.

[190]  F. Bruggeman,et al.  The multifarious short‐term regulation of ammonium assimilation of Escherichia coli: dissection using an in silico replica , 2005, The FEBS journal.

[191]  Mats Jirstrand,et al.  A Kinetic Model of the Monocarboxylate Transporter MCT1 and its Interaction with Carbonic Anhydrase II , 2010 .

[192]  Debasis Sarkar,et al.  Optimisation of fed-batch bioreactors using genetic algorithms , 2003 .

[193]  Susumu Goto,et al.  KEGG: Kyoto Encyclopedia of Genes and Genomes , 2000, Nucleic Acids Res..

[194]  R. Brent Table errata: Algorithms for minimization without derivatives (Prentice-Hall, Englewood Cliffs, N. J., 1973) , 1975 .

[195]  Diethard Mattanovich,et al.  Modeling and measuring intracellular fluxes of secreted recombinant protein in Pichia pastoris with a novel 34 S labeling procedure , 2011 .

[196]  A. Minton,et al.  The Influence of Macromolecular Crowding and Macromolecular Confinement on Biochemical Reactions in Physiological Media* , 2001, The Journal of Biological Chemistry.

[197]  I. E. Nikerel,et al.  Model reduction and a priori kinetic parameter identifiability analysis using metabolome time series for metabolic reaction networks with linlog kinetics. , 2009, Metabolic engineering.

[198]  Ida Schomburg,et al.  Enzyme databases. , 2010, Methods in molecular biology.

[199]  H. Akaike A new look at the statistical model identification , 1974 .

[200]  Ning Chen,et al.  Genome-based kinetic modeling of cytosolic glucose metabolism in industrially relevant cell lines: Saccharomyces cerevisiae and Chinese hamster ovary cells , 2012, Bioprocess and Biosystems Engineering.

[201]  V. Hatzimanikatis,et al.  Modeling of uncertainties in biochemical reactions , 2011, Biotechnology and bioengineering.

[202]  C. Wittmann,et al.  From zero to hero--design-based systems metabolic engineering of Corynebacterium glutamicum for L-lysine production. , 2011, Metabolic engineering.

[203]  E. Klipp,et al.  Bringing metabolic networks to life: convenience rate law and thermodynamic constraints , 2006, Theoretical Biology and Medical Modelling.

[204]  Francis J Doyle,et al.  A top-down approach to mechanistic biological modeling: application to the single-chain antibody folding pathway. , 2008, Biophysical journal.

[205]  Huimin Zhao,et al.  Industrial biotechnology: Tools and applications. , 2015, Biotechnology advances.

[206]  E. Gilles,et al.  Metabolic design based on a coupled gene expression-metabolic network model of tryptophan production in Escherichia coli. , 2004, Metabolic engineering.

[207]  Bernd Freisleben,et al.  From Enzyme Kinetics to Metabolic Network Modeling – Visualization Tool for Enhanced Kinetic Analysis of Biochemical Network Models , 2006 .

[208]  Jens Nielsen,et al.  Toward design-based engineering of industrial microbes. , 2010, Current opinion in microbiology.

[209]  William E. Balch,et al.  An Adaptable Standard for Protein Export from the Endoplasmic Reticulum , 2007, Cell.

[210]  Pedro de Atauri,et al.  Dual feedback loops in the GAL regulon suppress cellular heterogeneity in yeast , 2006, Nature Genetics.

[211]  Jian-Yong Wu,et al.  Modeling of Xanthophyllomyces dendrorhous growth on glucose and overflow metabolism in batch and fed‐batch cultures for astaxanthin production , 2008, Biotechnology and bioengineering.

[212]  Johann M. Rohwer,et al.  Metabolic Control Analysis of Glycerol Synthesis in Saccharomyces cerevisiae , 2002, Applied and Environmental Microbiology.

[213]  J. Banga,et al.  Structural Identifiability of Systems Biology Models: A Critical Comparison of Methods , 2011, PloS one.

[214]  Sebastian Ehrlichmann Zero To Hero , 2016 .

[215]  Julio R. Banga,et al.  An evolutionary method for complex-process optimization , 2010, Comput. Oper. Res..

[216]  Johan Karlsson,et al.  Minimal output sets for identifiability. , 2012, Mathematical biosciences.

[217]  S Jayatilleke,et al.  Application of model , 2009 .

[218]  H P Wynn,et al.  Differential algebra methods for the study of the structural identifiability of rational function state-space models in the biosciences. , 2001, Mathematical biosciences.

[219]  Edda Klipp,et al.  Modelling reveals novel roles of two parallel signalling pathways and homeostatic feedbacks in yeast , 2012, Molecular systems biology.

[220]  E. W. V. van Niel,et al.  Kinetic modelling reveals current limitations in the production of ethanol from xylose by recombinant Saccharomyces cerevisiae. , 2011, Metabolic engineering.

[221]  Diethard Mattanovich,et al.  Construction of microbial cell factories for industrial bioprocesses , 2012 .

[222]  E. V. Nikolaev,et al.  The elucidation of metabolic pathways and their improvements using stable optimization of large-scale kinetic models of cellular systems. , 2010, Metabolic engineering.

[223]  Ronan M. T. Fleming,et al.  Genome-Scale Reconstruction of Escherichia coli's Transcriptional and Translational Machinery: A Knowledge Base, Its Mathematical Formulation, and Its Functional Characterization , 2009, PLoS Comput. Biol..

[224]  Christopher R. Myers,et al.  Universally Sloppy Parameter Sensitivities in Systems Biology Models , 2007, PLoS Comput. Biol..

[225]  M. Reuss,et al.  Multi-scale spatio-temporal modeling: lifelines of microorganisms in bioreactors and tracking molecules in cells. , 2010, Advances in biochemical engineering/biotechnology.

[226]  Fumio Matsuda,et al.  Estimation of metabolic fluxes, expression levels and metabolite dynamics of a secondary metabolic pathway in potato using label pulse-feeding experiments combined with kinetic network modelling and simulation. , 2007, The Plant journal : for cell and molecular biology.

[227]  Frank Allgöwer,et al.  Amplitude distribution of stochastic oscillations in biochemical networks due to intrinsic noise , 2009, PMC biophysics.

[228]  Desmond J. Higham,et al.  An Algorithmic Introduction to Numerical Simulation of Stochastic Differential Equations , 2001, SIAM Rev..

[229]  Christopher J. Devers,et al.  Critical Perspective on Gamification in Education , 2015 .

[230]  Julia Handl,et al.  Streamlining the construction of large-scale dynamic models using generic kinetic equations , 2010, Bioinform..

[231]  M MolinaroAnnette,et al.  Prediction error estimation , 2005 .

[232]  P. Ao,et al.  Towards kinetic modeling of global metabolic networks: Methylobacterium extorquens AM1 growth as validation. , 2008, Sheng wu gong cheng xue bao = Chinese journal of biotechnology.

[233]  Masahiro Okamoto,et al.  Kinetic modeling and sensitivity analysis of xylose metabolism in Lactococcus lactis IO-1. , 2009, Journal of bioscience and bioengineering.

[234]  T. Elston,et al.  Bistability, stochasticity, and oscillations in the mitogen-activated protein kinase cascade. , 2006, Biophysical journal.

[235]  Douglas B. Kell,et al.  Non-linear optimization of biochemical pathways: applications to metabolic engineering and parameter estimation , 1998, Bioinform..

[236]  David McMillen,et al.  Biochemical Network Stochastic Simulator (BioNetS): software for stochastic modeling of biochemical networks , 2004, BMC Bioinformatics.

[237]  J E Bailey,et al.  MCA has more to say. , 1996, Journal of theoretical biology.

[238]  C. Tang,et al.  The unfolded protein response and translation attenuation: a modelling approach , 2010, Diabetes, obesity & metabolism.

[239]  D. Machado,et al.  Critical perspective on the consequences of the limited availability of kinetic data in metabolic dynamic modelling. , 2011, IET systems biology.

[240]  Jungoh Ahn,et al.  Genome-scale metabolic reconstruction and in silico analysis of methylotrophic yeast Pichia pastoris for strain improvement , 2010, Microbial cell factories.

[241]  P. Vicini,et al.  Cellular signaling identifiability analysis: a case study. , 2010, Journal of theoretical biology.

[242]  T. Schäfer,et al.  Modelling hybridoma cell growth and metabolism--a comparison of selected models and data. , 1996, Journal of biotechnology.

[243]  Markus J. Herrgård,et al.  Integrated analysis of regulatory and metabolic networks reveals novel regulatory mechanisms in Saccharomyces cerevisiae. , 2006, Genome research.

[244]  Xin Yao,et al.  Search biases in constrained evolutionary optimization , 2005, IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews).

[245]  Christopher G. Dowson,et al.  Indistinguishability and identifiability of kinetic models for the MurC reaction in peptidoglycan biosynthesis , 2011, Comput. Methods Programs Biomed..

[246]  Syed Murtuza Baker,et al.  Comparison of different algorithms for simultaneous estimation of multiple parameters in kinetic metabolic models , 2010, J. Integr. Bioinform..

[247]  C. Chassagnole,et al.  Dynamic modeling of the central carbon metabolism of Escherichia coli. , 2002, Biotechnology and bioengineering.

[248]  J. Bailey,et al.  Analysis and design of metabolic reaction networks via mixed‐integer linear optimization , 1996 .

[249]  Antonios Armaou,et al.  A Computational Procedure for Optimal Engineering Interventions Using Kinetic Models of Metabolism , 2006, Biotechnology progress.

[250]  SchmidtHenning,et al.  Systems Biology Toolbox for MATLAB , 2006 .

[251]  Lennart Ljung,et al.  System Identification: Theory for the User , 1987 .

[252]  George J G Ruijter,et al.  Metabolic Control Analysis of Aspergillus nigerl‐Arabinose Catabolism , 2005, Biotechnology progress.

[253]  Kamil Erguler,et al.  Practical limits for reverse engineering of dynamical systems: a statistical analysis of sensitivity and parameter inferability in systems biology models. , 2011, Molecular bioSystems.

[254]  Kwangjoon Jeong,et al.  High-level excretory production of recombinant protein into culture medium by fed-batch culture of Escherichia coli , 2002 .

[255]  Eberhard O. Voit,et al.  Simulation and validation of modelled sphingolipid metabolism in Saccharomyces cerevisiae , 2005, Nature.

[256]  J. Bailey,et al.  Optimization of regulatory architectures in metabolic reaction networks , 1996, Biotechnology and bioengineering.

[257]  Mudita Singhal,et al.  COPASI - a COmplex PAthway SImulator , 2006, Bioinform..

[258]  A. H. Smith Metabolism of citric acid in infancy. , 1938 .

[259]  Rui Oliveira,et al.  Hybrid elementary flux analysis/nonparametric modeling: application for bioprocess control , 2007, BMC Bioinformatics.

[260]  Markus J. Herrgård,et al.  A consensus yeast metabolic network reconstruction obtained from a community approach to systems biology , 2008, Nature Biotechnology.

[261]  Elmar Heinzle,et al.  Mixed glucose and lactate uptake by Corynebacterium glutamicum through metabolic engineering. , 2011, Biotechnology journal.

[262]  Ramon Gonzalez,et al.  Quantitative analysis of the fermentative metabolism of glycerol in Escherichia coli , 2012, Biotechnology and bioengineering.

[263]  K. Patil,et al.  Enhancing sesquiterpene production in Saccharomyces cerevisiae through in silico driven metabolic engineering. , 2009, Metabolic engineering.

[264]  H. Pohjanpalo System identifiability based on the power series expansion of the solution , 1978 .

[265]  J. Selbig,et al.  Kinetic hybrid models composed of mechanistic and simplified enzymatic rate laws – a promising method for speeding up the kinetic modelling of complex metabolic networks , 2009, The FEBS journal.

[266]  Maria Rodriguez-Fernandez,et al.  A hybrid approach for efficient and robust parameter estimation in biochemical pathways. , 2006, Bio Systems.

[267]  Teresa Mitchell,et al.  Optimization of erythropoietin production with controlled glycosylation-PEGylated erythropoietin produced in glycoengineered Pichia pastoris. , 2012, Journal of biotechnology.

[268]  Alexandre Sedoglavic A probabilistic algorithm to test local algebraic observability in polynomial time , 2001, ISSAC '01.

[269]  Gang Bai,et al.  Metabolic control analysis of L-cysteine producing strain TS1138 of Pseudomonas sp. , 2009, Biochemistry (Moscow).

[270]  Christopher R Myers,et al.  Extracting Falsifiable Predictions from Sloppy Models , 2007, Annals of the New York Academy of Sciences.

[271]  Andrew J Racher,et al.  An empirical modeling platform to evaluate the relative control discrete CHO cell synthetic processes exert over recombinant monoclonal antibody production process titer , 2011, Biotechnology and bioengineering.

[272]  Maria Pia Saccomani,et al.  DAISY: A new software tool to test global identifiability of biological and physiological systems , 2007, Comput. Methods Programs Biomed..

[273]  Henning Schmidt SBaddon: high performance simulation for the Systems Biology Toolbox for MATLAB , 2007, Bioinform..

[274]  Y. Schneider,et al.  Metabolic design of macroscopic bioreaction models: application to Chinese hamster ovary cells , 2006, Bioprocess and biosystems engineering.

[275]  J. Timmer,et al.  Systems biology: experimental design , 2009, The FEBS journal.

[276]  Georges Bastin,et al.  Dynamic metabolic modelling under the balanced growth condition , 2004 .

[277]  Xin Yao,et al.  Stochastic ranking for constrained evolutionary optimization , 2000, IEEE Trans. Evol. Comput..

[278]  T. Gerngross,et al.  Glycosylation engineering in yeast: the advent of fully humanized yeast. , 2007, Current opinion in biotechnology.

[279]  Eugénio C. Ferreira,et al.  Hybrid dynamic modeling of Escherichia coli central metabolic network combining Michaelis-Menten and approximate kinetic equations , 2010, Biosyst..

[280]  J. Heijnen Approximative kinetic formats used in metabolic network modeling , 2005, Biotechnology and bioengineering.

[281]  Torsten P. Bohlin,et al.  Practical Grey-box Process Identification: Theory and Applications , 2006 .

[282]  Eberhard O Voit,et al.  Integration of kinetic information on yeast sphingolipid metabolism in dynamical pathway models. , 2004, Journal of theoretical biology.

[283]  Olaf Wolkenhauer,et al.  Stochastic approaches in systems biology , 2010, Wiley interdisciplinary reviews. Systems biology and medicine.

[284]  H. Rabitz,et al.  Similarity transformation approach to identifiability analysis of nonlinear compartmental models. , 1989, Mathematical biosciences.

[285]  J. Nielsen,et al.  Industrial systems biology. , 2010, Biotechnology and bioengineering.

[286]  Sang Yup Lee,et al.  Dynamic modeling of lactic acid fermentation metabolism with Lactococcus lactis. , 2011, Journal of microbiology and biotechnology.

[287]  Diethard Mattanovich,et al.  Modeling and measuring intracellular fluxes of secreted recombinant protein in Pichia pastoris with a novel 34S labeling procedure , 2011, Microbial cell factories.

[288]  P. Verheijen,et al.  Dynamic gene expression regulation model for growth and penicillin production in Penicillium chrysogenum , 2010, Biotechnology and bioengineering.

[289]  Kiran Raosaheb Patil,et al.  Use of genome-scale microbial models for metabolic engineering. , 2004, Current opinion in biotechnology.

[290]  Eugen Bobasu,et al.  Structural identifiability of some biotechnological systems , 2007 .

[291]  W. Wiechert,et al.  Experimental design for the identification of macrokinetic models and model discrimination. , 1997, Biotechnology and bioengineering.