Universality of persistence diagrams and the bottleneck and Wasserstein distances

We undertake a formal study of persistence diagrams and their metrics. We show that barcodes and persistence diagrams together with the bottleneck distance and the Wasserstein distances are obtained via universal constructions and thus have corresponding universal properties. In addition, the 1-Wasserstein distance satisfies Kantorovich-Rubinstein duality. Our constructions and results apply to any metric space with a distinguished basepoint. For example, they can also be applied to multiparameter persistence modules.

[1]  Håvard Bakke Bjerkevik Stability of higher-dimensional interval decomposable persistence modules , 2016, ArXiv.

[2]  Leonidas J. Guibas,et al.  Persistence barcodes for shapes , 2004, SGP '04.

[3]  W. Crawley-Boevey Decomposition of pointwise finite-dimensional persistence modules , 2012, 1210.0819.

[4]  Patrizio Frosini,et al.  Natural Pseudo-Distance and Optimal Matching between Reduced Size Functions , 2008, ArXiv.

[5]  M. Ziegler Volume 152 of Graduate Texts in Mathematics , 1995 .

[6]  C. Villani Topics in Optimal Transportation , 2003 .

[7]  Vin de Silva,et al.  Interleaving and Gromov-Hausdorff distance , 2017, 1707.06288.

[8]  Vin de Silva,et al.  Metrics for Generalized Persistence Modules , 2013, Found. Comput. Math..

[9]  David Cohen-Steiner,et al.  Stability of Persistence Diagrams , 2005, Discret. Comput. Geom..

[10]  Peter Bubenik,et al.  Wasserstein distance for generalized persistence modules and abelian categories , 2018 .

[11]  CATEGORIES, NORMS AND WEIGHTS , 2006, math/0603298.

[12]  Michael Lesnick,et al.  Algebraic Stability of Zigzag Persistence Modules , 2016, Algebraic & Geometric Topology.

[13]  Théo Lacombe,et al.  Understanding the Topology and the Geometry of the Persistence Diagram Space via Optimal Partial Transport , 2019, ArXiv.

[14]  John von Neumann,et al.  1. A Certain Zero-sum Two-person Game Equivalent to the Optimal Assignment Problem , 1953 .

[15]  J. Isbell Six theorems about injective metric spaces , 1964 .

[16]  F. William Lawvere,et al.  Metric spaces, generalized logic, and closed categories , 1973 .

[17]  Vin de Silva,et al.  Categorification of Gromov-Hausdorff Distance and Interleaving of Functors , 2017 .

[19]  Steve Oudot,et al.  Decomposition of Exact pfd Persistence Bimodules , 2020, Discret. Comput. Geom..

[20]  Vincent Divol,et al.  Understanding the Topology and the Geometry of the Space of Persistence Diagrams via Optimal Partial Transport , 2019 .

[21]  Ulrich Bauer,et al.  The Reeb Graph Edit Distance is Universal , 2018, SoCG.

[22]  L. Evans Partial Differential Equations and Monge-Kantorovich Mass Transfer , 1997 .

[23]  lawa Kanas,et al.  Metric Spaces , 2020, An Introduction to Functional Analysis.

[24]  Michael Lesnick,et al.  Universality of the Homotopy Interleaving Distance , 2017, ArXiv.

[25]  E. J. McShane,et al.  Extension of range of functions , 1934 .

[26]  Peter Bubenik,et al.  Categorification of Persistent Homology , 2012, Discret. Comput. Geom..

[27]  David Cohen-Steiner,et al.  Stability of Persistence Diagrams , 2007, Discret. Comput. Geom..

[28]  Vladimir I. Levenshtein,et al.  Binary codes capable of correcting deletions, insertions, and reversals , 1965 .

[29]  Leonidas J. Guibas,et al.  A Barcode Shape Descriptor for Curve Point Cloud Data , 2022 .

[30]  Jean-Daniel Boissonnat,et al.  Proceedings of the 2004 Eurographics/ACM SIGGRAPH symposium on Geometry processing , 2004 .