How to measure the pose robustness of object views

Abstract The viewing hemisphere of a three-dimensional object can be partitioned into areas of similar views, which provide pose robustness. We compare two procedures for measuring the robustness of views to pose variation: tracking of object features, i.e. Gabor wavelet responses, by utilizing the continuity of successive views and matching of features in different views, which are assumed to be independent. Both procedures proved to be appropriate to detect canonical views. We found no difference concerning the size of the view bubbles, but tracking provides more precise correspondences than matching. Tracking is more appropriate for recognizing changes of features, whereas matching is more suitable if features of the same appearance are to be found.

[1]  B. Bergum,et al.  Attention and performance IX , 1982 .

[2]  J. Tenenbaum,et al.  A global geometric framework for nonlinear dimensionality reduction. , 2000, Science.

[3]  Vicki Bruce,et al.  Face Recognition: From Theory to Applications , 1999 .

[4]  Barbara Zitová,et al.  A Comparative Evaluation of Matching and Tracking Object Features for the Purpose of Estimating Similar-View-Areas of 3-Dimensional Objects , 1999 .

[5]  Christoph von der Malsburg,et al.  Tracking and learning graphs and pose on image sequences of faces , 1996, Proceedings of the Second International Conference on Automatic Face and Gesture Recognition.

[6]  A. J. Mistlin,et al.  Visual neurones responsive to faces , 1987, Trends in Neurosciences.

[7]  Hanspeter A. Mallot,et al.  Phase-based binocular vergence control and depth reconstruction using active vision , 1994 .

[8]  Allen M. Waxman,et al.  Adaptive 3-D Object Recognition from Multiple Views , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[9]  A. Jennekens‐Schinkel Vision, memory and the temporal lobe By Eiichi Iwai and Mortimer Mishkin (eds.), Elsevier, New York, Amsterdam, London, 1990, 453 pages, US$95.00, ISBN 0-444-01531-0 , 1991, Journal of the Neurological Sciences.

[10]  David J. Fleet,et al.  Computation of component image velocity from local phase information , 1990, International Journal of Computer Vision.

[11]  Daphna Weinshall,et al.  A self-organizing multiple-view representation of 3D objects , 2004, Biological Cybernetics.

[12]  Joachim M. Buhmann,et al.  Distortion Invariant Object Recognition in the Dynamic Link Architecture , 1993, IEEE Trans. Computers.

[13]  Gérard G. Medioni,et al.  Interactive 3D model extraction from a single image , 2001, Image Vis. Comput..

[14]  W. Eric L. Grimson,et al.  Introduction to the Special Issue on Interpretation of 3-D Scenes , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[15]  Bernhard Schölkopf,et al.  Support vector learning , 1997 .

[16]  J. Koenderink,et al.  The internal representation of solid shape with respect to vision , 1979, Biological Cybernetics.

[17]  H. Sebastian Seung,et al.  The Manifold Ways of Perception , 2000, Science.

[18]  Norbert Krüger,et al.  Face Recognition by Elastic Bunch Graph Matching , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[19]  Rolf P. Würtz,et al.  Object Recognition Robust Under Translations, Deformations, and Changes in Background , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[20]  Jochen Triesch,et al.  GripSee: A Gesture-Controlled Robot for Object Perception and Manipulation , 1999, Auton. Robots.

[21]  Raashid Malik,et al.  Angle Densities and Recognition of 3D Objects , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[22]  Hartmut Neven,et al.  The Bochum/USC Face Recognition System And How it Fared in the FERET Phase III Test , 1998 .

[23]  P. Kellman Perception of three-dimensional form by human infants , 1984, Perception & psychophysics.

[24]  Norbert Krüger,et al.  Face recognition by elastic bunch graph matching , 1997, Proceedings of International Conference on Image Processing.

[25]  Michael Werman,et al.  On View Likelihood and Stability , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[26]  Bernhard Schölkopf,et al.  Comparison of View-Based Object Recognition Algorithms Using Realistic 3D Models , 1996, ICANN.