Lifting simplices to find injectivity

Mapping a source mesh into a target domain while preserving local injectivity is an important but highly non-trivial task. Existing methods either require an already-injective starting configuration, which is often not available, or rely on sophisticated solving schemes. We propose a novel energy form, called Total Lifted Content (TLC), that is equipped with theoretical properties desirable for injectivity optimization. By lifting the simplices of the mesh into a higher dimension and measuring their contents (2D area or 3D volume) there, TLC is smooth over the entire embedding space and its global minima are always injective. The energy is simple to minimize using standard gradient-based solvers. Our method achieved 100% success rate on an extensive benchmark of embedding problems for triangular and tetrahedral meshes, on which existing methods only have varied success.

[1]  Bruno Lévy,et al.  Mesh parameterization: theory and practice , 2007, SIGGRAPH Courses.

[2]  Craig Gotsman,et al.  Discrete one-forms on meshes and applications to 3D mesh parameterization , 2006, Comput. Aided Geom. Des..

[3]  Ligang Liu,et al.  Progressive parameterizations , 2018, ACM Trans. Graph..

[4]  Stephen J. Wright,et al.  Numerical Optimization , 2018, Fundamental Statistical Inference.

[5]  Yaron Lipman,et al.  Bijective Mappings of Meshes with Boundary and the Degree in Mesh Processing , 2013, SIAM J. Imaging Sci..

[6]  K. Hormann,et al.  MIPS: An Efficient Global Parametrization Method , 2000 .

[7]  Michael S. Floater,et al.  One-to-one piecewise linear mappings over triangulations , 2003, Math. Comput..

[8]  Ligang Liu,et al.  Embedding a triangular graph within a given boundary , 2011, Comput. Aided Geom. Des..

[9]  J. Geelen ON HOW TO DRAW A GRAPH , 2012 .

[10]  Daniele Panozzo,et al.  Simplicial complex augmentation framework for bijective maps , 2017, ACM Trans. Graph..

[11]  Yaron Lipman,et al.  Injective and bounded distortion mappings in 3D , 2013, ACM Trans. Graph..

[12]  Robert Bridson,et al.  Blended cured quasi-newton for distortion optimization , 2018, ACM Trans. Graph..

[13]  Scott Schaefer,et al.  Isometry‐Aware Preconditioning for Mesh Parameterization , 2017, Comput. Graph. Forum.

[14]  Ulrich Pinkall,et al.  Computing Discrete Minimal Surfaces and Their Conjugates , 1993, Exp. Math..

[15]  Denis Zorin,et al.  Locally injective parametrization with arbitrary fixed boundaries , 2014, ACM Trans. Graph..

[16]  Kai Hormann,et al.  Surface Parameterization: a Tutorial and Survey , 2005, Advances in Multiresolution for Geometric Modelling.

[17]  Ronen Basri,et al.  Large-scale bounded distortion mappings , 2015, ACM Trans. Graph..

[18]  Eftychios Sifakis,et al.  Fast and Robust Inversion‐Free Shape Manipulation , 2016, Comput. Graph. Forum.

[19]  Baining Guo,et al.  Computing locally injective mappings by advanced MIPS , 2015, ACM Trans. Graph..

[20]  Scott Schaefer,et al.  Bijective parameterization with free boundaries , 2015, ACM Trans. Graph..

[21]  Daniele Panozzo,et al.  Progressive embedding , 2019, ACM Trans. Graph..

[22]  Olga Sorkine-Hornung,et al.  Geometric optimization via composite majorization , 2017, ACM Trans. Graph..

[23]  Pankaj K. Agarwal,et al.  Untangling triangulations through local explorations , 2008, SCG '08.

[24]  YANQING CHEN,et al.  Algorithm 8 xx : CHOLMOD , supernodal sparse Cholesky factorization and update / downdate ∗ , 2006 .

[25]  Xianfeng Gu,et al.  A discrete uniformization theorem for polyhedral surfaces II , 2014, Journal of Differential Geometry.

[26]  Yang Liu,et al.  Efficient Volumetric PolyCube‐Map Construction , 2016, Comput. Graph. Forum.

[27]  Ofir Weber,et al.  A Subspace Method for Fast Locally Injective Harmonic Mapping , 2019, Comput. Graph. Forum.

[28]  Chenfanfu Jiang,et al.  Decomposed optimization time integrator for large-step elastodynamics , 2019, ACM Trans. Graph..

[29]  Cláudio T. Silva,et al.  Bijective maps from simplicial foliations , 2016, ACM Trans. Graph..

[30]  Jian-Ping Su,et al.  Practical Foldover‐Free Volumetric Mapping Construction , 2019, Comput. Graph. Forum.

[31]  Olga Sorkine-Hornung,et al.  Locally Injective Mappings , 2013 .

[32]  Ronald Fedkiw,et al.  Robust quasistatic finite elements and flesh simulation , 2005, SCA '05.

[33]  W. T. Tutte How to Draw a Graph , 1963 .

[34]  Olga Sorkine-Hornung,et al.  Scalable locally injective mappings , 2017, TOGS.

[35]  Timothy R. Langlois,et al.  Incremental Potential Contact: Intersection- and Inversion-free, Large-Deformation Dynamics , 2020 .

[36]  Yang Liu,et al.  Computing inversion-free mappings by simplex assembly , 2016, ACM Trans. Graph..

[37]  Yaron Lipman,et al.  Orbifold Tutte embeddings , 2015, ACM Trans. Graph..