Quantitative internal thermal energy mapping of semiconductor devices under short current stress using backside laser interferometry

In the backside interferometric thermal mapping technique, an infrared (IR) laser beam probes the temperature-induced changes in the semiconductor refractive index inside a semiconductor device, which results in a change in the measured optical phase shift. In this paper, a theoretical analysis of the phase shift is reported. The focus is on nanosecond-to-microsecond time-scale thermal mapping during high current stress, as occurring e.g., during an electrostatic discharge (ESD) event or in some power applications. An analytical expression for phase shift is obtained from the analysis of the thermal diffusion equation. The phase shift is directly proportional to the two-dimensional (2-D) heat energy density in the semiconductor active region of the device. The phase shift is also expressed in terms of the local dissipated heat energy and the heat transferred to the device top and lateral sides. In addition, the space integral of the phase shift is expressed in terms of a total energy dissipated in the device and the total heat transferred from the semiconductor to the top device layers. The theory shows an excellent agreement with experimental data obtained for a p-n diode ESD protection structure working in the avalanche regime.

[1]  E. Oesterschulze,et al.  Photo-thermal characterization of solids and thin films by optical and scanning probe techniques , 1993 .

[2]  Ursula Keller,et al.  Noninvasive optical probe of free charge and applied voltage in GaAs devices , 1988 .

[3]  W L Wolfe,et al.  Refractive indexes and temperature coefficients of germanium and silicon. , 1976, Applied optics.

[4]  Heterodyn interferometer for the detection of electric and thermal signals in integrated circuits through the substrate , 1993 .

[5]  Bo Breitholtz,et al.  Heat generation in Si bipolar power devices: The relative importance of various contributions , 1996 .

[6]  Dionyz Pogany,et al.  Time-resolved analysis of self-heating in power VDMOSFETs using backside laserprobing , 1997 .

[7]  Kartikeya Mayaram,et al.  Self-heating effects in basic semiconductor structures , 1993 .

[8]  B. J. Baliga,et al.  Modern Power Devices , 1987 .

[9]  G. Krieger,et al.  Thermal response of integrated circuit input devices to an electrostatic energy pulse , 1987, IEEE Transactions on Electron Devices.

[10]  H. Morkoç,et al.  Simulation study of peak junction temperature and power limitation of AlGaAs/GaAs HBTs under pulsed and CW operation , 1992, IEEE Electron Device Letters.

[11]  Optical testing of submicron-technology MOSFETs and bipolar transistors , 1997, 27th European Solid-State Device Research Conference.

[12]  Gerhard K. M. Wachutka,et al.  Rigorous thermodynamic treatment of heat generation and conduction in semiconductor device modeling , 1990, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[13]  Ajith Amerasekera,et al.  ESD in integrated circuits , 1992 .

[14]  Giovanni Breglio,et al.  Experimental detection of time dependent temperature maps in power bipolar transistors , 2000 .

[15]  L.K.J. Vandamme,et al.  Empirical temperature dependence of the refractive index of semiconductors , 1995 .

[17]  A. Amerasekera,et al.  ESD failure modes: characteristics mechanisms, and process influences , 1992 .

[18]  K. Goodson,et al.  Thermal mapping of interconnects subjected to brief electrical stresses , 1997, IEEE Electron Device Letters.

[19]  M. J. Deen,et al.  Theoretical and experimental characterization of self-heating in silicon integrated devices operating at low temperatures , 2000 .

[20]  R. Soref,et al.  Electrooptical effects in silicon , 1987 .

[21]  G. Deboy,et al.  Absolute measurement of transient carrier concentration and temperature gradients in power semiconductor devices by internal IR-laser deflection , 1996 .

[22]  E. A. Amerasekera,et al.  ESD in silicon integrated circuits , 1995 .

[23]  M. Iodice,et al.  Temperature dependence of the thermo-optic coefficient of InP, GaAs, and SiC from room temperature to 600 K at the wavelength of 1.5 μm , 2000 .

[24]  H. K. Heinrich,et al.  Noninvasive sheet charge density probe for integrated silicon devices , 1986 .

[25]  V. Quintard,et al.  Laser probing of thermal behaviour of electronic components and its application in quality and reliability testing , 1993 .

[26]  P. L. Hower,et al.  Avalanche injection and second breakdown in transistors , 1970 .

[27]  G. Wachutka,et al.  Internal characterization of IGBTs using the backside laser probing technique-interpretation of measurement by numerical simulation , 1998, Proceedings of the 10th International Symposium on Power Semiconductor Devices and ICs. ISPSD'98 (IEEE Cat. No.98CH36212).

[28]  M. Delfino,et al.  Wavelength-specific pyrometry as a temperature measurement tool , 1992 .

[29]  Vernon,et al.  Temperature dependence of the near-infrared refractive index of silicon, gallium arsenide, and indium phosphide. , 1994, Physical review. B, Condensed matter.

[30]  M. Stecher,et al.  Interferometric temperature mapping during ESD stress and failure analysis of smart power technology ESD protection devices , 1999, Electrical Overstress/Electrostatic Discharge Symposium Proceedings. 1999 (IEEE Cat. No.99TH8396).

[31]  Egbert Oesterschulze,et al.  Thermal imaging and measurement techniques for electronic materials and devices , 1996 .

[32]  Dionyz Pogany,et al.  Thermal and free carrier concentration mapping during ESD event in smart Power ESD protection devices using an improved laser interferometric technique , 2000 .

[33]  D. Pogany,et al.  Laser interferometric method for ns-time scale thermal mapping of Smart Power ESD protection devices during ESD stress , 1999 .

[34]  A. Majumdar,et al.  Scanning Joule expansion microscopy at nanometer scales , 1998 .

[35]  G. Soelkner,et al.  Optical beam testing and its potential for electronic device characterization , 1993 .

[36]  William Lo,et al.  Laser beam backside probing of CMOS integrated circuits , 1999 .

[37]  G. Wachutka,et al.  Numerical Simulation of Infrared Laser Probing Techniques , 1998 .

[38]  S.S. Wong,et al.  Short-timescale thermal mapping of semiconductor devices , 1997, IEEE Electron Device Letters.

[39]  M. Reichling,et al.  Thermal wave imaging of electrically heated microstructures , 1996 .

[40]  I. Herman Real-time optical thermometry during semiconductor processing , 1995 .

[41]  S. M. Sze,et al.  Physics of semiconductor devices , 1969 .

[42]  Mario Paniccia,et al.  Optical probing of flip chip packaged microprocessors , 1998 .

[43]  Sergey Bychikhin,et al.  Thermal and free carrier laser interferometric mapping and failure analysis of anti-serial smart power ESD protection structures , 2001, Microelectron. Reliab..

[44]  Dionyz Pogany,et al.  Study of triggering inhomogeneities in gg-nMOS ESD protection devices via thermal mapping using backside laser interferometry , 2000 .

[45]  R. Wiesendanger Scanning Probe Microscopy and Spectroscopy: Contents , 1994 .

[46]  D. S. Campbell,et al.  Thermal failure in semiconductor devices , 1990 .

[47]  J. Yamashita,et al.  An experimental and numerical study on the forward biased SOA of IGBTs , 1996 .

[48]  V. Dubec,et al.  Investigation of ESD protection elements under high current stress in CDM-like time domain using backside laser interferometry , 2002, 2002 Electrical Overstress/Electrostatic Discharge Symposium.

[49]  G. Groos,et al.  Study of trigger instabilities in smart power technology ESD protection devices using a laser interferometric thermal mapping technique , 2001, 2001 Electrical Overstress/Electrostatic Discharge Symposium.

[50]  Kai Esmark Device simulation of ESD protection elements , 2001 .

[51]  Dionyz Pogany,et al.  Simulation and experimental study of temperature distribution during ESD stress in smart-power technology ESD protection structures , 2000, 2000 IEEE International Reliability Physics Symposium Proceedings. 38th Annual (Cat. No.00CH37059).