Convexity and the separability problem of quantum mechanical density matrices

[1]  B. Terhal Detecting quantum entanglement , 2001, Theor. Comput. Sci..

[2]  K. Gerlach,et al.  Geometry and product states , 2000, Quantum Inf. Comput..

[3]  M. Steiner,et al.  Preserving entanglement under perturbation and sandwiching all separable states , 2000, quant-ph/0009090.

[4]  J. Cirac,et al.  Characterization of separable states and entanglement witnesses , 2000, quant-ph/0005112.

[5]  R. Werner All teleportation and dense coding schemes , 2000, quant-ph/0003070.

[6]  M. Lewenstein,et al.  Separable approximations of density matrices of composite quantum systems , 2000, quant-ph/0011066.

[7]  J. Cirac,et al.  Separability and distillability in composite quantum systems-a primer , 2000, quant-ph/0006064.

[8]  P. Marwedel Optimization of entanglement witnesses , 2000, quant-ph/0005014.

[9]  M. Ozawa Entanglement measures and the Hilbert-Schmidt distance , 2000, quant-ph/0002036.

[10]  G. Milburn,et al.  Qudit Entanglement , 2000, quant-ph/0001075.

[11]  A. O. Pittenger,et al.  Separability and Fourier representations of density matrices , 2000, quant-ph/0001014.

[12]  Complete separability and Fourier representations of n-qubit states , 1999, quant-ph/9912116.

[13]  Charles H. Bennett,et al.  Exact and asymptotic measures of multipartite pure-state entanglement , 1999, Physical Review A.

[14]  Guifre Vidal,et al.  Entanglement monotones , 1998, quant-ph/9807077.

[15]  Arthur O. Pittenger,et al.  An Introduction to Quantum Computing Algorithms , 2000 .

[16]  Carlton M. Caves,et al.  Qutrit Entanglement , 1999, quant-ph/9910001.

[17]  J. Cirac,et al.  Separability and Distillability of Multiparticle Quantum Systems , 1999, quant-ph/9903018.

[18]  C. Witte,et al.  A NEW ENTANGLEMENT MEASURE INDUCED BY THE HILBERT-SCHMIDT NORM , 1998, quant-ph/9811027.

[19]  R. Jozsa,et al.  SEPARABILITY OF VERY NOISY MIXED STATES AND IMPLICATIONS FOR NMR QUANTUM COMPUTING , 1998, quant-ph/9811018.

[20]  G. Vidal,et al.  Robustness of entanglement , 1998, quant-ph/9806094.

[21]  D. Aharonov Quantum Computation , 1998, quant-ph/9812037.

[22]  B. Terhal A family of indecomposable positive linear maps based on entangled quantum states , 1998, quant-ph/9810091.

[23]  M. Lewenstein,et al.  Volume of the set of separable states , 1998, quant-ph/9804024.

[24]  G. Vidal On the characterization of entanglement , 1998 .

[25]  W. Wootters Entanglement of Formation of an Arbitrary State of Two Qubits , 1997, quant-ph/9709029.

[26]  M. Plenio,et al.  Entanglement measures and purification procedures , 1997, quant-ph/9707035.

[27]  Schumacher,et al.  Sending entanglement through noisy quantum channels. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[28]  E. Knill Non-binary unitary error bases and quantum codes , 1996, quant-ph/9608048.

[29]  M. Horodecki,et al.  Separability of mixed states: necessary and sufficient conditions , 1996, quant-ph/9605038.

[30]  Charles H. Bennett,et al.  Mixed-state entanglement and quantum error correction. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[31]  B. Schumacher Sending quantum entanglement through noisy channels , 1996, quant-ph/9604023.

[32]  Pérès,et al.  Separability Criterion for Density Matrices. , 1996, Physical review letters.

[33]  S. Axler Linear Algebra Done Right , 1995, Undergraduate Texts in Mathematics.

[34]  S. Lloyd Quantum-Mechanical Computers , 1995 .

[35]  Fivel Remarkable phase oscillations appearing in the lattice dynamics of Einstein-Podolsky-Rosen states. , 1995, Physical review letters.

[36]  Charles H. Bennett,et al.  Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. , 1993, Physical review letters.

[37]  Werner,et al.  Quantum states with Einstein-Podolsky-Rosen correlations admitting a hidden-variable model. , 1989, Physical review. A, General physics.

[38]  W. Rudin Principles of mathematical analysis , 1964 .

[39]  Albert Einstein,et al.  Can Quantum-Mechanical Description of Physical Reality Be Considered Complete? , 1935 .