Convexity and the separability problem of quantum mechanical density matrices
暂无分享,去创建一个
[1] B. Terhal. Detecting quantum entanglement , 2001, Theor. Comput. Sci..
[2] K. Gerlach,et al. Geometry and product states , 2000, Quantum Inf. Comput..
[3] M. Steiner,et al. Preserving entanglement under perturbation and sandwiching all separable states , 2000, quant-ph/0009090.
[4] J. Cirac,et al. Characterization of separable states and entanglement witnesses , 2000, quant-ph/0005112.
[5] R. Werner. All teleportation and dense coding schemes , 2000, quant-ph/0003070.
[6] M. Lewenstein,et al. Separable approximations of density matrices of composite quantum systems , 2000, quant-ph/0011066.
[7] J. Cirac,et al. Separability and distillability in composite quantum systems-a primer , 2000, quant-ph/0006064.
[8] P. Marwedel. Optimization of entanglement witnesses , 2000, quant-ph/0005014.
[9] M. Ozawa. Entanglement measures and the Hilbert-Schmidt distance , 2000, quant-ph/0002036.
[10] G. Milburn,et al. Qudit Entanglement , 2000, quant-ph/0001075.
[11] A. O. Pittenger,et al. Separability and Fourier representations of density matrices , 2000, quant-ph/0001014.
[12] Complete separability and Fourier representations of n-qubit states , 1999, quant-ph/9912116.
[13] Charles H. Bennett,et al. Exact and asymptotic measures of multipartite pure-state entanglement , 1999, Physical Review A.
[14] Guifre Vidal,et al. Entanglement monotones , 1998, quant-ph/9807077.
[15] Arthur O. Pittenger,et al. An Introduction to Quantum Computing Algorithms , 2000 .
[16] Carlton M. Caves,et al. Qutrit Entanglement , 1999, quant-ph/9910001.
[17] J. Cirac,et al. Separability and Distillability of Multiparticle Quantum Systems , 1999, quant-ph/9903018.
[18] C. Witte,et al. A NEW ENTANGLEMENT MEASURE INDUCED BY THE HILBERT-SCHMIDT NORM , 1998, quant-ph/9811027.
[19] R. Jozsa,et al. SEPARABILITY OF VERY NOISY MIXED STATES AND IMPLICATIONS FOR NMR QUANTUM COMPUTING , 1998, quant-ph/9811018.
[20] G. Vidal,et al. Robustness of entanglement , 1998, quant-ph/9806094.
[21] D. Aharonov. Quantum Computation , 1998, quant-ph/9812037.
[22] B. Terhal. A family of indecomposable positive linear maps based on entangled quantum states , 1998, quant-ph/9810091.
[23] M. Lewenstein,et al. Volume of the set of separable states , 1998, quant-ph/9804024.
[24] G. Vidal. On the characterization of entanglement , 1998 .
[25] W. Wootters. Entanglement of Formation of an Arbitrary State of Two Qubits , 1997, quant-ph/9709029.
[26] M. Plenio,et al. Entanglement measures and purification procedures , 1997, quant-ph/9707035.
[27] Schumacher,et al. Sending entanglement through noisy quantum channels. , 1996, Physical review. A, Atomic, molecular, and optical physics.
[28] E. Knill. Non-binary unitary error bases and quantum codes , 1996, quant-ph/9608048.
[29] M. Horodecki,et al. Separability of mixed states: necessary and sufficient conditions , 1996, quant-ph/9605038.
[30] Charles H. Bennett,et al. Mixed-state entanglement and quantum error correction. , 1996, Physical review. A, Atomic, molecular, and optical physics.
[31] B. Schumacher. Sending quantum entanglement through noisy channels , 1996, quant-ph/9604023.
[32] Pérès,et al. Separability Criterion for Density Matrices. , 1996, Physical review letters.
[33] S. Axler. Linear Algebra Done Right , 1995, Undergraduate Texts in Mathematics.
[34] S. Lloyd. Quantum-Mechanical Computers , 1995 .
[35] Fivel. Remarkable phase oscillations appearing in the lattice dynamics of Einstein-Podolsky-Rosen states. , 1995, Physical review letters.
[36] Charles H. Bennett,et al. Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. , 1993, Physical review letters.
[37] Werner,et al. Quantum states with Einstein-Podolsky-Rosen correlations admitting a hidden-variable model. , 1989, Physical review. A, General physics.
[38] W. Rudin. Principles of mathematical analysis , 1964 .
[39] Albert Einstein,et al. Can Quantum-Mechanical Description of Physical Reality Be Considered Complete? , 1935 .