Nonlinear numerical dissipative elastodynamics of an optimal solid shell element
暂无分享,去创建一个
X. G. Tan | L. Vu-Quoc | L. Vu-Quoc | X. Tan
[1] E. Stein,et al. An assumed strain approach avoiding artificial thickness straining for a non‐linear 4‐node shell element , 1995 .
[2] O. C. Zienkiewicz,et al. An alpha modification of Newmark's method , 1980 .
[3] F. Armero,et al. Formulation and analysis of conserving algorithms for frictionless dynamic contact/impact problems , 1998 .
[4] Jintai Chung,et al. A Time Integration Algorithm for Structural Dynamics With Improved Numerical Dissipation: The Generalized-α Method , 1993 .
[5] J. C. Simo,et al. Exact energy-momentum conserving algorithms and symplectic schemes for nonlinear dynamics , 1992 .
[6] X. G. Tan,et al. Optimal solid shells for non-linear analyses of multilayer composites. II. Dynamics , 2003 .
[7] J. C. Simo,et al. On the dynamics of finite-strain rods undergoing large motions a geometrically exact approach , 1988 .
[8] J. C. Simo,et al. A CLASS OF MIXED ASSUMED STRAIN METHODS AND THE METHOD OF INCOMPATIBLE MODES , 1990 .
[9] Ekkehard Ramm,et al. Generalized Energy–Momentum Method for non-linear adaptive shell dynamics , 1999 .
[10] E. Ramm,et al. Shear deformable shell elements for large strains and rotations , 1997 .