Amygdala projections to central amygdaloid nucleus subdivisions and transition zones in the primate

In rats and primates, the central nucleus of the amygdala (CeN) is most known for its role in responses to fear stimuli. Recent evidence also shows that the CeN is required for directing attention and behaviors when the salience of competing stimuli is in flux. To examine how information flows through this key output region of the primate amygdala, we first placed small injections of retrograde tracers into the subdivisions of the central nucleus in Old world primates, and examined inputs from specific amygdaloid nuclei. The amygdalostriatal area and interstitial nucleus of the posterior limb of the anterior commissure (IPAC) were distinguished from the CeN using histochemical markers, and projections to these regions were also described. As expected, the basal nucleus and accessory basal nucleus are the main afferent connections of the central nucleus and transition zones. The medial subdivision of the central nucleus (CeM) receives a significantly stronger input from all regions compared to the lateral core subdivision (CeLcn). The corticoamygdaloid transition zone (a zone of confluence of the medial parvicellular basal nucleus, paralaminar nucleus, and the sulcal periamygdaloid cortex) provides the main input to the CeLcn. The IPAC and amygdalostriatal area can be divided in medial and lateral subregions, and receive input from the basal and accessory basal nucleus, with differential inputs according to subdivision. The piriform cortex and lateral nucleus, two important sensory interfaces, send projections to the transition zones. In sum, the CeM receives broad inputs from the entire amygdala, whereas the CeLcn receives more restricted inputs from the relatively undifferentiated corticoamygdaloid transition region. Like the CeN, the transition zones receive most of their input from the basal nucleus and accessory basal nucleus, however, inputs from the piriform cortex and lateral nucleus, and a lack of input from the parvicellular accessory basal nucleus, are distinguishing afferent features.

[1]  D. Paré,et al.  Physiological properties of central amygdala neurons: species differences , 2002, The European journal of neuroscience.

[2]  E. Jolkkonen,et al.  Projections from the amygdalo‐piriform transition area to the amygdaloid complex: A PHA‐l study in rat , 2001, The Journal of comparative neurology.

[3]  Adolf Pfefferbaum,et al.  The Human Basal Forebrain Integrates the Old and the New , 2004, Neuron.

[4]  R E Harlan,et al.  The accumbens: beyond the core-shell dichotomy. , 1997, The Journal of neuropsychiatry and clinical neurosciences.

[5]  W. Nauta,et al.  The amygdalostriatal projection in the rat—an anatomical study by anterograde and retrograde tracing methods , 1982, Neuroscience.

[6]  R. S. Williams,et al.  The human amygdaloid complex: A cytologic and histochemical atlas using Nissl, myelin, acetylcholinesterase and nicotinamide adenine dinucleotide phosphate diaphorase staining , 1990, Neuroscience.

[7]  Mark D. Underwood,et al.  Autonomic and somatomotor effects of amygdala central N. stimulation in awake rabbits , 1983, Physiology & Behavior.

[8]  D. Amaral,et al.  The entorhinal cortex of the monkey: I. Cytoarchitectonic organization , 1987, The Journal of comparative neurology.

[9]  Michael Davis,et al.  Neurotransmission in the rat amygdala related to fear and anxiety , 1994, Trends in Neurosciences.

[10]  H. Steinbusch,et al.  Distribution of serotonin-immunoreactivity in the central nervous system of the rat—Cell bodies and terminals , 1981, Neuroscience.

[11]  S. J. Shammah-Lagnado,et al.  Afferent connections of the amygdalopiriform transition area in the rat , 2005, The Journal of comparative neurology.

[12]  D. Amaral,et al.  Amygdalo‐cortical projections in the monkey (Macaca fascicularis) , 1984, The Journal of comparative neurology.

[13]  John S Morrisj How do you feel? , 2002, Trends in Cognitive Sciences.

[14]  Julie L. Fudge,et al.  Distribution of Serotonin Transporter Labeled Fibers in Amygdaloid Subregions: Implications for Mood Disorders , 2006, Biological Psychiatry.

[15]  J. Price,et al.  Limbic connections of the orbital and medial prefrontal cortex in macaque monkeys , 1995, The Journal of comparative neurology.

[16]  J. O'Doherty,et al.  Neural Responses during Anticipation of a Primary Taste Reward , 2002, Neuron.

[17]  G. Alheid Extended Amygdala and Basal Forebrain , 2003, Annals of the New York Academy of Sciences.

[18]  D. Amaral,et al.  Organization of the intrinsic connections of the monkey amygdaloid complex: Projections originating in the lateral nucleus , 1998, The Journal of comparative neurology.

[19]  D. Amaral,et al.  An autoradiographic study of the projections of the central nucleus of the monkey amygdala , 1981, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[20]  E. Williams,et al.  Discrimination of striatopallidum and extended amygdala in the rat: a role for parvalbumin immunoreactive neurons? , 2003, Brain Research.

[21]  Michael Davis,et al.  Efferent pathway of the amygdala involved in conditioned fear as measured with the fear-potentiated startle paradigm. , 1991, Behavioral neuroscience.

[22]  Elizabeth Hall,et al.  Distribution of acetylcholinesterase and monoamine oxidase in the amygdala of the guinea pig , 2004, Zeitschrift für Zellforschung und Mikroskopische Anatomie.

[23]  J. Price,et al.  Architectonic subdivision of the human orbital and medial prefrontal cortex , 2003, The Journal of comparative neurology.

[24]  M. Cassell,et al.  Evidence for a GABAergic interface between cortical afferents and brainstem projection neurons in the rat central extended amygdala , 1994, The Journal of comparative neurology.

[25]  Jeffrey P. Pascoe,et al.  Electrophysiological characteristics of amygdaloid central nucleus neurons during Pavlovian fear conditioning in the rabbit , 1985, Behavioural Brain Research.

[26]  A. McDonald,et al.  Cytoarchitecture of the central amygdaloid nucleus of the rat , 1982, The Journal of comparative neurology.

[27]  T. Gray,et al.  Peptide immunoreactive neurons in the amygdala and the bed nucleus of the stria terminalis project to the midbrain central gray in the rat , 1992, Peptides.

[28]  A. Vercelli,et al.  Recent techniques for tracing pathways in the central nervous system of developing and adult mammals , 2000, Brain Research Bulletin.

[29]  P. Holland,et al.  Central, But Not Basolateral, Amygdala Is Critical for Control of Feeding by Aversive Learned Cues , 2009, The Journal of Neuroscience.

[30]  Dr. Finn-Mogens Šmejda Haug Sulphide Silver Pattern and Cytoarchitectonics of Parahippocampal Areas in the Rat , 1976, Advances in Anatomy, Embryology and Cell Biology / Ergebnisse der Anatomie und Entwicklungsgeschichte / Revues d’anatomie et de morphologie expérimentale.

[31]  Douglas L. Rosene,et al.  The Hippocampal Formation of the Primate Brain , 1987 .

[32]  松岡 勝人,et al.  25TH ANNUAL MEETING SOCIETY FOR NEUROSCIENCE , 1996 .

[33]  H. Higashi,et al.  Synaptic responses of guinea pig and rat central amygdala neurons in vitro. , 1991, Journal of Neurophysiology.

[34]  Michael Davis,et al.  Cortical Afferents to the Extended Amygdala , 1999, Annals of the New York Academy of Sciences.

[35]  Joseph E LeDoux,et al.  Intrinsic connections of the rat amygdaloid complex: Projections originating in the accessory basal nucleus , 1996, The Journal of comparative neurology.

[36]  R. Faull,et al.  Compartmentalization of parvalbumin immunoreactivity in the human striatum , 1993, Brain Research.

[37]  E. Irle,et al.  Afferent connections of the substantia innominata/basal nucleus of Meynert in carnivores and primates. , 1986, Journal fur Hirnforschung.

[38]  D L Rosene,et al.  Comparison of the efferents of the amygdala and the hippocampal formation in the rhesus monkey: II. Reciprocal and non‐reciprocal connections , 1988, The Journal of comparative neurology.

[39]  D. Rosene,et al.  A cryoprotection method that facilitates cutting frozen sections of whole monkey brains for histological and histochemical processing without freezing artifact. , 1986, The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society.

[40]  D. Paré,et al.  Synaptic Plasticity in the Central Nucleus of the Amygdala , 2005, Reviews in the neurosciences.

[41]  D. Amaral,et al.  Some observations on cortical inputs to the macaque monkey amygdala: An anterograde tracing study , 2002, The Journal of comparative neurology.

[42]  D. Hopkins Amygdalotegmental projections in the rat, cat and rhesus monkey , 1975, Neuroscience Letters.

[43]  D. Amaral,et al.  The distribution of serotonergic fibers in the macaque monkey amygdala: An immunohistochemical study using antisera to 5-hydroxytryptamine , 2005, Neuroscience.

[44]  Michela Gallagher,et al.  Amygdala central nucleus lesions disrupt increments, but not decrements, in conditioned stimulus processing. , 1993, Behavioral Neuroscience.

[45]  D. Amaral,et al.  The amygdalostriatal projections in the monkey. An anterograde tracing study , 1985, Brain Research.

[46]  D. S. Zahm,et al.  The patterns of afferent innervation of the core and shell in the “Accumbens” part of the rat ventral striatum: Immunohistochemical detection of retrogradely transported fluoro‐gold , 1993, The Journal of comparative neurology.

[47]  L. Porrino,et al.  Distribution of norepinephrine transporters in the non-human primate brain , 2006, Neuroscience.

[48]  D. Amaral,et al.  The afferent connections of the substantia innominata in the monkey, Macaca fascicularis , 1985, The Journal of comparative neurology.

[49]  Joseph E LeDoux,et al.  Intrinsic connections of the rat amygdaloid complex: Projections originating in the basal nucleus , 1995, The Journal of comparative neurology.

[50]  H. Critchley,et al.  Neural systems supporting interoceptive awareness , 2004, Nature Neuroscience.

[51]  S. Haber,et al.  The central nucleus of the amygdala projection to dopamine subpopulations in primates , 2000, Neuroscience.

[52]  E. Crosby,et al.  Studies of the vertebrate telencephalon. II. The nuclear pattern of the anterior olfactory nucleus, tuberculum olfactorium and the amygdaloid complex in adult man , 1941 .

[53]  H. Groenewegen,et al.  Connections of the parahippocampal cortex in the cat. II. Subcortical afferents , 1986, The Journal of comparative neurology.

[54]  M. Gallagher,et al.  Cardiovascular responses elicited by electrical stimulation of the amygdala central nucleus in the rabbit , 1982, Brain Research.

[55]  Michela Gallagher,et al.  Amygdala central nucleus lesions: Effect on heart rate conditioning in the rabbit , 1979, Physiology & Behavior.

[56]  L. Heimer,et al.  Afferent connections of the interstitial nucleus of the posterior limb of the anterior commissure and adjacent amygdalostriatal transition area in the rat , 1999, Neuroscience.

[57]  J. D. Olmos,et al.  The projection field of the stria terminalis in the rat brain. An experimental study , 1972, The Journal of comparative neurology.

[58]  P. Holland,et al.  Different Roles for Amygdala Central Nucleus and Substantia Innominata in the Surprise-Induced Enhancement of Learning , 2006, The Journal of Neuroscience.

[59]  E. Jolkkonen,et al.  Intrinsic connections of the rat amygdaloid complex: Projections originating in the central nucleus , 1998, The Journal of comparative neurology.

[60]  J. Price,et al.  A description of the amygdaloid complex in the rat and cat with observations on intra‐amygdaloid axonal connections , 1978, The Journal of comparative neurology.

[61]  T. Robbins,et al.  Different types of fear-conditioned behaviour mediated by separate nuclei within amygdala , 1997, Nature.

[62]  S. Shelton,et al.  The Primate Amygdala Mediates Acute Fear But Not the Behavioral and Physiological Components of Anxious Temperament , 2001, The Journal of Neuroscience.

[63]  J. Halperin,et al.  A study of the dynamics of retrograde transport and accumulation of horseradish peroxidase in injured neurons , 1975, Brain Research.

[64]  A. Pitkänen,et al.  Projections from the periamygdaloid cortex to the amygdaloid complex, the hippocampal formation, and the parahippocampal region: A PHA‐L study in the rat , 2003, Hippocampus.

[65]  O MARBURG,et al.  The amygdaloid complex. , 1949, Confinia neurologica.

[66]  L. Heimer,et al.  Striatal and central extended amygdala parts of the interstitial nucleus of the posterior limb of the anterior commissure: Evidence from tract‐tracing techniques in the rat , 2001, The Journal of comparative neurology.

[67]  Finn A. GENnS Distribution of Acetyl Cholinesterase in the Hippocampal Region of the Guinea Pig , 1972 .

[68]  John P. Aggleton,et al.  The amygdala: Neurobiological aspects of emotion, memory, and mental dysfunction. , 1992 .

[69]  Em Mead,et al.  Society for Neuroscience Annual Meeting , 2009 .

[70]  A. McDonald,et al.  Topographical organization of amygdaloid projections to the caudatoputamen, nucleus accumbens, and related striatal-like areas of the rat brain , 1991, Neuroscience.

[71]  Nikolaus R. McFarland,et al.  Striatonigrostriatal Pathways in Primates Form an Ascending Spiral from the Shell to the Dorsolateral Striatum , 2000, The Journal of Neuroscience.

[72]  A. Parent,et al.  Complementary Distribution of Calbindin D‐28k and Parvalbumin in the Basal Forebrain and Midbrain of the Squirrel Monkey , 1991, The European journal of neuroscience.

[73]  M Mishkin,et al.  The locus and cytoarchitecture of the projection areas of the olfactory bulb in Macaca mulatta , 1978, The Journal of comparative neurology.

[74]  G. V. Van Hoesen,et al.  Hippocampal efferents reach widespread areas of cerebral cortex and amygdala in the rhesus monkey. , 1977, Science.

[75]  S. Haber,et al.  Defining the Caudal Ventral Striatum in Primates: Cellular and Histochemical Features , 2002, The Journal of Neuroscience.

[76]  M. Gallagher,et al.  Amygdala central nucleus lesions disrupt increments, but not decrements, in conditioned stimulus processing. , 1993, Behavioral neuroscience.

[77]  P. Veinante,et al.  Vasopressin and Oxytocin Excite Distinct Neuronal Populations in the Central Amygdala , 2005, Science.

[78]  Anders Björklund,et al.  The primate nervous system , 1997 .

[79]  M Mishkin,et al.  Projections of the amygdala to the thalamus in the cynomolgus monkey , 1984, The Journal of comparative neurology.

[80]  P. Montague,et al.  Neural Economics and the Biological Substrates of Valuation , 2002, Neuron.

[81]  J. Price,et al.  Architectonic subdivision of the orbital and medial prefrontal cortex in the macaque monkey , 1994, The Journal of comparative neurology.

[82]  Joseph E LeDoux,et al.  Rethinking the Fear Circuit: The Central Nucleus of the Amygdala Is Required for the Acquisition, Consolidation, and Expression of Pavlovian Fear Conditioning , 2006, The Journal of Neuroscience.

[83]  Alan Peters,et al.  Further aspects of cortical function, including hippocampus , 1987 .

[84]  Joseph E LeDoux,et al.  Differential contribution of amygdala and hippocampus to cued and contextual fear conditioning. , 1992, Behavioral neuroscience.

[85]  D. Price,et al.  The bed nucleus‐amygdala continuum in human and monkey , 1991, The Journal of comparative neurology.

[86]  H. Kita,et al.  An HRP study of the afferent connections to rat medial hypothalamic region , 1982, Brain Research Bulletin.

[87]  M. Davis,et al.  Involvement of the central nucleus and basolateral complex of the amygdala in fear conditioning measured with fear-potentiated startle in rats trained concurrently with auditory and visual conditioned stimuli , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[88]  D. Nance,et al.  Fluorescent dextrans as sensitive anterograde neuroanatomical tracers: Applications and pitfalls , 1990, Brain Research Bulletin.

[89]  G. Paxinos,et al.  THE HUMAN NERVOUS SYSTEM , 1975 .

[90]  M. Gallagher,et al.  The amygdala central nucleus and appetitive Pavlovian conditioning: lesions impair one class of conditioned behavior , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[91]  G. Paxinos The Rat nervous system , 1985 .

[92]  Russchen Ft Cortical and subcortical afferents of the amygdaloid complex. , 1986 .

[93]  J. Price,et al.  Central olfactory connections in the macaque monkey , 1994, The Journal of comparative neurology.

[94]  Joseph E LeDoux,et al.  Differential Contribution of Amygdala and Hippocampus to Cued and Contextual Fear Conditioning , 1992 .

[95]  S. D. Moore,et al.  Properties of the pathways from the lateral amygdal nucleus to basolateral nucleus and amygdalostriatal transition area. , 2002, Journal of neurophysiology.

[96]  D. Lewis,et al.  Heterogeneity of layer II neurons in human entorhinal cortex , 1992, The Journal of comparative neurology.

[97]  L. Swanson,et al.  Organization of projections from the basomedial nucleus of the amygdala: A PHAL study in the rat , 1996, The Journal of comparative neurology.

[98]  J. Price,et al.  Sources of presumptive glutamergic/aspartergic afferents to the rat ventral striatopallidal region , 1987, The Journal of comparative neurology.

[99]  M. Cassell,et al.  The Intrinsic Organization of the Central Extended Amygdala , 1999, Annals of the New York Academy of Sciences.

[100]  L. Swanson,et al.  Projections from the lateral part of the central amygdalar nucleus to the postulated fear conditioning circuit , 1997, Brain Research.

[101]  Murray B. Stein,et al.  Anticipation of Aversive Visual Stimuli Is Associated With Increased Insula Activation in Anxiety-Prone Subjects , 2006, Biological Psychiatry.

[102]  L. Heimer,et al.  Chapter II – The human basal forebrain. Part II , 1999 .

[103]  L. Heimer,et al.  In vivo anterograde and retrograde axonal trnasport of the fluoresecent rhodamine-dextran-amine, Fluor-Ruby, within the CNS , 1990, Brain Research.

[104]  P. Goldman-Rakic,et al.  Direct and indirect pathways from the amygdala to the frontal lobe in rhesus monkeys , 1981, The Journal of comparative neurology.

[105]  M. Fanselow,et al.  Acquisition of contextual Pavlovian fear conditioning is blocked by application of an NMDA receptor antagonist D,L-2-amino-5-phosphonovaleric acid to the basolateral amygdala. , 1994, Behavioral neuroscience.

[106]  M. Davis,et al.  Lesions of the central nucleus of the amygdala, but not the paraventricular nucleus of the hypothalamus, block the excitatory effects of corticotropin-releasing factor on the acoustic startle reflex , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[107]  Organization of connections of the basal and accessory basal nuclei in the monkey amygdala , 2000, The European journal of neuroscience.

[108]  J. D. McGaugh,et al.  Ibotenic acid lesions of the amygdala basolateral complex or central nucleus differentially effect the response to reductions in reward , 1996, Brain Research.

[109]  Joseph E LeDoux,et al.  Intrinsic connections of the rat amygdaloid complex: Projections originating in the lateral nucleus , 1995, The Journal of comparative neurology.

[110]  O. Ottersen,et al.  Connections of the amygdala of the rat. IV: Corticoamygdaloid and intraamygdaloid connections as studied with axonal transport of horseradish peroxidase , 1982, The Journal of comparative neurology.

[111]  J. Fudge,et al.  Insular and gustatory inputs to the caudal ventral striatum in primates , 2005, The Journal of comparative neurology.

[112]  J. Fudge,et al.  Amygdaloid inputs define a caudal component of the ventral striatum in primates , 2004, The Journal of comparative neurology.

[113]  D. Amaral,et al.  The afferent input to the magnocellular division of the mediodorsal thalamic nucleus in the monkey, Macaca fascicularis , 1987, The Journal of comparative neurology.

[114]  J. Fudge Bcl-2 immunoreactive neurons are differentially distributed in subregions of the amygdala and hippocampus of the adult macaque , 2004, Neuroscience.

[115]  Joseph E LeDoux,et al.  Topographic organization of neurons in the acoustic thalamus that project to the amygdala , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[116]  D. Amaral,et al.  Distribution of parvalbumin‐immunoreactive cells and fibers in the monkey temporal lobe: The amygdaloid complex , 1993, The Journal of comparative neurology.

[117]  H. Barbas,et al.  Pathways for emotion: interactions of prefrontal and anterior temporal pathways in the amygdala of the rhesus monkey , 2002, Neuroscience.

[118]  G. Alheid Amygdala and extended amygdala , 1995 .

[119]  D. Amaral,et al.  Cholinergic innervation of the monkey amygdala: An immunohistochemical analysis with antisera to choline acetyltransferase , 1989, The Journal of comparative neurology.

[120]  S. Haber,et al.  Amygdaloid projections to ventromedial striatal subterritories in the primate , 2002, Neuroscience.

[121]  D. Amaral,et al.  The entorhinal cortex of the monkey: III. Subcortical afferents , 1987, The Journal of comparative neurology.

[122]  Lennart Heimer,et al.  Chapter I - The human basal forebrain. Part I. An overview , 1999 .

[123]  J. Price,et al.  Projections from the amygdaloid complex and adjacent olfactory structures to the entorhinal cortex and to the subiculum in the rat and cat , 1977, The Journal of comparative neurology.

[124]  R. Dolan,et al.  A Functional Anatomy of Anticipatory Anxiety , 1999, NeuroImage.

[125]  C. Shi,et al.  Monoaminergic innervation of the macaque extended amygdala , 2001, Neuroscience.

[126]  T. Gray,et al.  Neuropeptide neuronal efferents from the bed nucleus of the stria terminalis and central amygdaloid nucleus to the dorsal vagal complex in the rat , 1987, The Journal of comparative neurology.

[127]  H. Kita,et al.  An HRP study of the afferent connections to rat lateral hypothalamic region , 1982, Brain Research Bulletin.

[128]  P. Holland,et al.  Role of Substantia Nigra–Amygdala Connections in Surprise-Induced Enhancement of Attention , 2006, The Journal of Neuroscience.

[129]  A. Craig How do you feel? Interoception: the sense of the physiological condition of the body , 2002, Nature Reviews Neuroscience.

[130]  A. Graybiel,et al.  Neurochemical architecture of the human striatum , 1997, The Journal of comparative neurology.

[131]  D. S. Zahm,et al.  Is the caudomedial shell of the nucleus accumbens part of the extended amygdala? A consideration of connections. , 1998, Critical reviews in neurobiology.

[132]  M. Cassell,et al.  Neuronal architecture in the rat central nucleus of the amygdala: A cytological, hodological, and immunocytochemical study , 1986, The Journal of comparative neurology.

[133]  S. Shelton,et al.  The Role of the Central Nucleus of the Amygdala in Mediating Fear and Anxiety in the Primate , 2004, The Journal of Neuroscience.

[134]  D. N. Pandya,et al.  Insular interconnections with the amygdala in the rhesus monkey , 1981, Neuroscience.

[135]  E. Jolkkonen,et al.  Interconnectivity between the amygdaloid complex and the amygdalostriatal transition area: A PHA‐L study in rat , 2001 .

[136]  J. Aggleton A description of intra-amygdaloid connections in old world monkeys , 2004, Experimental Brain Research.

[137]  C. D. Stern,et al.  Handbook of Chemical Neuroanatomy Methods in Chemical Neuroanatomy. Edited by A. Bjorklund and T. Hokfelt. Elsevier, Amsterdam, 1983. Cloth bound, 548 pp. UK £140. (Volume 1 in the series). , 1986, Neurochemistry International.

[138]  M. Witter,et al.  Connections of the parahippocampal cortex in the cat. IV. Subcortical efferents , 1986, The Journal of comparative neurology.

[139]  廣瀬雄一,et al.  Neuroscience , 2019, Workplace Attachments.

[140]  F. T. Russchen Cortical and subcortical afferents of the amygdaloid complex. , 1986, Advances in experimental medicine and biology.