Direct Measurement of Extension and Force in Conductive Polymer Gel Actuators

The synthesis of a polythiophene-based conductive polymer gel is described. Preliminary measurements of the electrochemically driven extension and force response of this gel are reported when driven under the action of an applied square-wave potential. Over each square wave interval (i.e., one oxidation pulse followed by one reduction pulse), the axial change in dimension was found to be approximately 2%. Some hysteresis was noted in that the cylindrical specimens did not return to their original axial dimension. The axial pressure generated by the expansion of the gel against a fixed surface was also measured and found to be on the order of 15 kPa.