Influence of tyre pressure and vertical load on coefficient of rolling resistance and simulated cycling performance

The coefficient of rolling resistance (C r) for pneumatic tyres is dependent on hysteresis loss from tyre deformation which is affected by the vertical force applied to the tyres (F v) and the tyre inflation pressure (P r). The purpose of this paper was to determine the relative influence of five different levels of P r and four different levels of F v on C r and to examine the relationships of C r with P r and F v during cycling locomotion. F v was modified through carriage of additional mass by the subject. C r was determined with the coasting deceleration method from measurements performed in a level hallway. Iterations minimizing the sum of the squared difference between the actual deceleration distance and a predicted deceleration distance were used to determine C r. This latter distance was computed from a derivation based on Newton's second law applied to the forces opposing motion. C r was described by a hyperbolic function of P r (C r = 0.1071 P r −0.477, r 2 = 0.99, p < 0.05), decreasing 62.4...