Observation of stable Néel skyrmions in cobalt/palladium multilayers with Lorentz transmission electron microscopy

[1]  R. Wiesendanger Nanoscale magnetic skyrmions in metallic films and multilayers: a new twist for spintronics , 2016 .

[2]  A. Fert,et al.  Additive interfacial chiral interaction in multilayers for stabilization of small individual skyrmions at room temperature. , 2016, Nature nanotechnology.

[3]  Yu-heng Zhang,et al.  Direct imaging of magnetic field-driven transitions of skyrmion cluster states in FeGe nanodisks , 2016, Proceedings of the National Academy of Sciences.

[4]  R. Wiesendanger,et al.  Symmetry breaking in spin spirals and skyrmions by in-plane and canted magnetic fields , 2016, 1603.05879.

[5]  Kang L. Wang,et al.  Mobile Néel skyrmions at room temperature: status and future , 2016, 1603.00443.

[6]  Kang L. Wang,et al.  Room-Temperature Creation and Spin-Orbit Torque Manipulation of Skyrmions in Thin Films with Engineered Asymmetry. , 2016, Nano letters.

[7]  A. Locatelli,et al.  Room-temperature chiral magnetic skyrmions in ultrathin magnetic nanostructures. , 2016, Nature nanotechnology.

[8]  C. Marrows,et al.  Magnetic microscopy and topological stability of homochiral Néel domain walls in a Pt/Co/AlOx trilayer , 2015, Nature Communications.

[9]  M Kubota,et al.  Large anisotropic deformation of skyrmions in strained crystal. , 2015, Nature nanotechnology.

[10]  A. N’Diaye,et al.  Room temperature skyrmion ground state stabilized through interlayer exchange coupling , 2015 .

[11]  Yu-heng Zhang,et al.  Edge-mediated skyrmion chain and its collective dynamics in a confined geometry , 2015, Nature Communications.

[12]  S. Heinze,et al.  Engineering skyrmions in transition-metal multilayers for spintronics , 2015, Nature Communications.

[13]  Y. Tokura,et al.  Real-Space Observation of Short-Period Cubic Lattice of Skyrmions in MnGe. , 2015, Nano letters.

[14]  Kang L. Wang,et al.  Blowing magnetic skyrmion bubbles , 2015, Science.

[15]  Benjamin Krueger,et al.  Observation of room-temperature magnetic skyrmions and their current-driven dynamics in ultrathin metallic ferromagnets. , 2015, Nature materials.

[16]  A. Fert,et al.  Anatomy of Dzyaloshinskii-Moriya Interaction at Co/Pt Interfaces. , 2015, Physical review letters.

[17]  Hyunsoo Yang,et al.  Direct observation of the Dzyaloshinskii-Moriya interaction in a Pt/Co/Ni film. , 2014, Physical review letters.

[18]  Y. Nakatani,et al.  Proposal for quantifying the Dzyaloshinsky–Moriya interaction by domain walls annihilation measurement , 2014 .

[19]  C. Marrows,et al.  Measuring and tailoring the Dzyaloshinskii-Moriya interaction in perpendicularly magnetized thin films , 2014 .

[20]  Yan Zhou,et al.  A reversible conversion between a skyrmion and a domain-wall pair in a junction geometry , 2014, Nature Communications.

[21]  Hans Fangohr,et al.  Skyrmion-skyrmion and skyrmion-edge repulsions in skyrmion-based racetrack memory , 2014, Scientific Reports.

[22]  Hyunsoo Yang,et al.  Spin-orbit torques in Co/Pd multilayer nanowires. , 2013, Physical review letters.

[23]  A. Fert,et al.  Nucleation, stability and current-induced motion of isolated magnetic skyrmions in nanostructures. , 2013, Nature nanotechnology.

[24]  A. N’Diaye,et al.  Tailoring the chirality of magnetic domain walls by interface engineering , 2013, Nature Communications.

[25]  S. Rohart,et al.  Skyrmion confinement in ultrathin film nanostructures in the presence of Dzyaloshinskii-Moriya interaction , 2013, 1310.0666.

[26]  R. Wiesendanger,et al.  Writing and Deleting Single Magnetic Skyrmions , 2013, Science.

[27]  Hyun-Woo Lee,et al.  Spin Hall torque magnetometry of Dzyaloshinskii domain walls , 2013, 1308.1432.

[28]  Kyung-Jin Lee,et al.  Asymmetric magnetic domain-wall motion by the Dzyaloshinskii-Moriya interaction , 2013, 1307.0984.

[29]  A. Fert,et al.  Skyrmions on the track. , 2013, Nature nanotechnology.

[30]  A. Fert,et al.  Dynamics of Dzyaloshinskii domain walls in ultrathin magnetic films , 2012, 1211.5970.

[31]  W. Branford,et al.  MALTS: A Tool to Simulate Lorentz Transmission Electron Microscopy From Micromagnetic Simulations , 2012, IEEE Transactions on Magnetics.

[32]  Yimei Zhu,et al.  Propagation of magnetic charge monopoles and Dirac flux strings in an artificial spin-ice lattice , 2012 .

[33]  K. Buchanan,et al.  Direct dynamic imaging of non-adiabatic spin torque effects , 2012, Nature Communications.

[34]  G. Rikken A New Twist on Spintronics , 2011, Science.

[35]  Y. Tokura,et al.  Near room-temperature formation of a skyrmion crystal in thin-films of the helimagnet FeGe. , 2011, Nature materials.

[36]  Y. Tokura,et al.  Real-space observation of a two-dimensional skyrmion crystal , 2010, Nature.

[37]  J. Bland,et al.  Dynamics and switching processes for magnetic bubbles in nanoelements , 2009 .

[38]  C. Pfleiderer,et al.  Skyrmion lattice in the doped semiconductor Fe1-xCoxSi , 2009, 0903.2587.

[39]  Michael L. Schneider,et al.  Reversal mechanisms in perpendicularly magnetized nanostructures , 2008 .

[40]  G. Pozzi,et al.  Characterization of JEOL 2100F Lorentz-TEM for low-magnification electron holography and magnetic imaging. , 2008, Ultramicroscopy.

[41]  Vishal Parekh,et al.  Magnetization reversal and magnetic anisotropy in patterned Co/Pd multilayer thin films , 2008 .

[42]  S. McVitie,et al.  Quantitative Fresnel Lorentz microscopy and the transport of intensity equation. , 2006, Ultramicroscopy.

[43]  Kazuo Ishizuka,et al.  Phase measurement of atomic resolution image using transport of intensity equation. , 2005, Journal of electron microscopy.

[44]  M. Beleggia,et al.  On the transport of intensity technique for phase retrieval. , 2004, Ultramicroscopy.

[45]  Kim,et al.  Clear evidence for strain changes according to Co layer thickness in metastable Co/Pd(111) multilayers: An extended x-ray absorption fine structure study. , 1996, Physical review. B, Condensed matter.

[46]  R. Henderson The potential and limitations of neutrons, electrons and X-rays for atomic resolution microscopy of unstained biological molecules , 1995, Quarterly Reviews of Biophysics.

[47]  Prieto,et al.  Lattice position of Hf and Ta in LiNbO3: An extended x-ray-absorption fine-structure study. , 1991, Physical review. B, Condensed matter.

[48]  A. Kohn,et al.  Experimental evaluation of the 'transport-of-intensity' equation for magnetic phase reconstruction in Lorentz transmission electron microscopy. , 2016, Ultramicroscopy.

[49]  I. Ial,et al.  Nature Communications , 2010, Nature Cell Biology.

[50]  Y. Zhu,et al.  Lorentz phase microscopy of magnetic materials. , 2004, Ultramicroscopy.

[51]  Elton N. Kaufmann,et al.  Characterization of materials , 2003 .

[52]  J N Chapman The investigation of magnetic domain structures in thin foils by electron microscopy , 1984 .