Economic efficiency requires interaction

Abstract We study the necessity of interaction between individuals for obtaining approximately efficient economic allocations. We view this as a formalization of Hayek's classic point of view that focuses on the information transfer advantages that markets have relative to centralized planning. We study two settings: combinatorial auctions with unit demand bidders (bipartite matching) and combinatorial auctions with subadditive bidders. In both settings we prove that non-interactive protocols require exponentially larger communication costs than do interactive ones, even ones that only use a modest amount of interaction.

[1]  Qin Zhang,et al.  Communication Complexity of Approximate Maximum Matching in Distributed Graph Data , 2013 .

[2]  Alvin E. Roth,et al.  Two-Sided Matching: A Study in Game-Theoretic Modeling and Analysis , 1990 .

[3]  Haim Kaplan,et al.  Non-price equilibria in markets of discrete goods , 2011, EC '11.

[4]  F. Hayek The economic nature of the firm: The use of knowledge in society , 1945 .

[5]  Eyal Kushilevitz,et al.  Communication Complexity , 1997, Adv. Comput..

[6]  Shahar Dobzinski,et al.  The computational complexity of truthfulness in combinatorial auctions , 2012, EC '12.

[7]  Daniel Lehmann,et al.  Combinatorial auctions with decreasing marginal utilities , 2001, EC '01.

[8]  D. Bertsekas The auction algorithm: A distributed relaxation method for the assignment problem , 1988 .

[9]  S. Matthew Weinberg,et al.  On Simultaneous Two-player Combinatorial Auctions , 2017, SODA.

[10]  Jan Vondrák,et al.  Optimal approximation for the submodular welfare problem in the value oracle model , 2008, STOC.

[11]  Jan Vondrák,et al.  Limitations of randomized mechanisms for combinatorial auctions , 2015, Games Econ. Behav..

[12]  Renato Paes Leme,et al.  The curse of simultaneity , 2012, ITCS '12.

[13]  Shahar Dobzinski,et al.  Two Randomized Mechanisms for Combinatorial Auctions , 2007, APPROX-RANDOM.

[14]  Tim Roughgarden,et al.  Welfare guarantees for combinatorial auctions with item bidding , 2011, SODA '11.

[15]  Annamária Kovács,et al.  Bayesian Combinatorial Auctions , 2008, ICALP.

[16]  O. Lange,et al.  On the Economic Theory of Socialism , 1938 .

[17]  Shahar Dobzinski,et al.  Computational Efficiency Requires Simple Taxation , 2016, 2016 IEEE 57th Annual Symposium on Foundations of Computer Science (FOCS).

[18]  Sepehr Assadi Combinatorial Auctions Do Need Modest Interaction , 2017, EC.

[19]  Noam Nisan,et al.  The communication requirements of efficient allocations and supporting prices , 2006, J. Econ. Theory.

[20]  Renato Paes Leme,et al.  On the efficiency of the walrasian mechanism , 2013, EC.

[21]  Tim Roughgarden,et al.  Sketching valuation functions , 2012, SODA.

[22]  Shahar Dobzinski,et al.  An improved approximation algorithm for combinatorial auctions with submodular bidders , 2006, SODA '06.

[23]  Maria-Florina Balcan,et al.  Learning submodular functions , 2010, STOC '11.

[24]  Noga Alon,et al.  Welfare Maximization with Limited Interaction , 2015, 2015 IEEE 56th Annual Symposium on Foundations of Computer Science.

[25]  L. Hurwicz The Design of Mechanisms for Resource Allocation , 1973 .

[26]  Christos H. Papadimitriou,et al.  Communication complexity , 1982, STOC '82.

[27]  Michal Feldman,et al.  Simultaneous auctions are (almost) efficient , 2012, STOC '13.

[28]  Uriel Feige,et al.  Approximation algorithms for allocation problems: Improving the factor of 1 - 1/e , 2006, 2006 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS'06).

[29]  Maria-Florina Balcan,et al.  Learning Valuation Functions , 2011, COLT.

[30]  D. Gale,et al.  Multi-Item Auctions , 1986, Journal of Political Economy.