Secondary electron emission from freely supported nanowires

We present secondary electron (SE) emission results from freely supported carbon/silicon nitride (Si3N4) hybrid nanowires using scanning electron microscopy. We found that, contrary to bulk materials, the SE emission from insulating or electrically isolated metallic nanowires is strongly suppressed by the penetrating beam. A mechanism of the SE suppression by the positive specimen charging is proposed, which is based on a total emission yield calculation using the Monte Carlo technique. This finding provides an important basis for studying low-energy electron emission from nanostructures under a penetrating electron beam.

[1]  M. L. Simpson,et al.  Initial growth of vertically aligned carbon nanofibers , 2004 .

[2]  Bright contrast imaging of carbon nanofiber-substrate interface , 2006 .

[3]  J. Cazaux,et al.  Some considerations on the electric field induced in insulators by electron bombardment , 1986 .

[4]  J. Cazaux Some considerations on the secondary electron emission, δ, from e− irradiated insulators , 1999 .

[5]  S. Okayama,et al.  Penetration and energy-loss theory of electrons in solid targets , 1972 .

[6]  David C. Joy,et al.  Monte Carlo Modeling for Electron Microscopy and Microanalysis , 1995 .

[7]  Hans C. Pfeiffer,et al.  Contactless electrical testing of large area specimens using electron beams , 1981 .

[8]  G. Auday,et al.  Secondary emission of dielectrics used in plasma display panels , 2000 .

[9]  Toshishige Yamada,et al.  Monte Carlo simulation of scanning electron microscopy bright contrast images of suspended carbon nanofibers , 2007 .

[10]  Motosuke Miyoshi,et al.  Negative charging-up contrast formation of multilayered structures with a nonpenetrating electron beam in scanning-electron microscope , 2005 .

[11]  H. Jacobs Field-Dependent Secondary Emission , 1951 .

[12]  David C. Joy,et al.  Calculations of Mott scattering cross section , 1990 .

[13]  Jun Li,et al.  Bright-field transmission imaging of carbon nanofibers on bulk substrate using conventional scanning electron microscopy , 2007 .

[14]  Charles M. Lieber,et al.  Carbon nanotube-based nonvolatile random access memory for molecular computing , 2000, Science.

[15]  M. Dresselhaus,et al.  Structural characterization of cup-stacked-type nanofibers with an entirely hollow core , 2002 .

[16]  Yan Chen,et al.  High-density silicon and silicon nitride cones , 2000 .

[17]  I. A. Glavatskikh,et al.  Self-consistent electrical charging of insulating layers and metal-insulator-semiconductor structures , 2001 .

[18]  K. Kanaya,et al.  Secondary electron emission due to primary and backscattered electrons , 1972 .

[19]  D. Tréheux,et al.  Secondary electron emission and self-consistent charge transport and storage in bulk insulators: Application to alumina , 2003 .

[20]  J. M. Kim,et al.  Secondary electron emission characteristics for sol–gel based SiO2 thin films , 2001 .

[21]  Louis Malter,et al.  Thin Film Field Emission , 1936 .

[22]  J. Vigouroux,et al.  Electron trapping in amorphous SiO2 studied by charge buildup under electron bombardment , 1985 .

[23]  Kahp Y. Suh,et al.  Stretched polymer nanohairs by nanodrawing. , 2006 .

[24]  M. Meyyappan,et al.  Structural characteristics of carbon nanofibers for on-chip interconnect applications , 2005 .

[25]  L. Reimer,et al.  Scanning Electron Microscopy , 1984 .

[26]  H. Jacobs,et al.  THE MECHANISM OF FIELD DEPENDENT SECONDARY EMISSION , 1952 .

[27]  Chang Q. Sun,et al.  From diamond to crystalline silicon carbonitride: effect of introduction of nitrogen in CH4/H2 gas mixture using MW-PECVD , 2002 .

[28]  David C. Joy,et al.  An empirical stopping power relationship for low‐energy electrons , 1989 .

[29]  M. Meyyappan,et al.  Combinatorial chips for optimizing the growth and integration of carbon nanofibre based devices , 2003 .

[30]  H. Bethe Zur Theorie des Durchgangs schneller Korpuskularstrahlen durch Materie , 1930 .

[31]  M. Meyyappan,et al.  Reactor design considerations in the hot filament/direct current plasma synthesis of carbon nanofibers , 2003 .