The Global versus Local Hamiltonian Description of Quantum Input-Output Theory

The aim of this paper is to derive the global Hamiltonian form for a quantum system and bath, or more generally a quantum network with multiple quantum input field connections, based on the local descriptions. We give a new simple argument which shows that the global Hamiltonian for a single Markov component arises as the singular perturbation of the free translation operator. We show that the Fermi analogue takes an equivalent form provided the parity of the coefficients is correctly specified. This allows us to immediately extend the theory of quantum feedback networks to Fermi systems.

[1]  John Gough Asymptotic stochastic transformations for nonlinear quantum dynamical systems , 1999 .

[2]  J. E. Gough,et al.  Enhancement of field squeezing using coherent feedback , 2009, 0906.1933.

[3]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[4]  Stuart A. Wolf,et al.  Spintronics : A Spin-Based Electronics Vision for the Future , 2009 .

[5]  K. Parthasarathy An Introduction to Quantum Stochastic Calculus , 1992 .

[6]  H. Ohno,et al.  Electric-field control of ferromagnetism , 2000, Nature.

[7]  Igor Volovich,et al.  Quantum Theory and Its Stochastic Limit , 2002 .

[8]  D. Applebaum Fermion Ito's formula II: the gauge process in fermion fock space , 1987 .

[9]  C. Gardiner,et al.  Quantum Noise: A Handbook of Markovian and Non-Markovian Quantum Stochastic Methods with Applications to Quantum Optics , 2004 .

[11]  L. Vandersypen,et al.  Single-shot read-out of an individual electron spin in a quantum dot , 2004, Nature.

[12]  David Applebaum,et al.  Fermion Ito's formula and stochastic evolutions , 1984 .

[13]  Dmitri S. Pavlichin,et al.  Designing quantum memories with embedded control: photonic circuits for autonomous quantum error correction. , 2009, Physical review letters.

[14]  L. Accardi NOISE AND DISSIPATION IN QUANTUM THEORY , 1990 .

[15]  Hendra Ishwara Nurdin,et al.  Network Synthesis of Linear Dynamical Quantum Stochastic Systems , 2008, SIAM J. Control. Optim..

[16]  Loss,et al.  Quantum dot as spin filter and spin memory , 2000, Physical review letters.

[17]  Hendra Ishwara Nurdin,et al.  On Synthesis of Linear Quantum Stochastic Systems by Pure Cascading , 2010, IEEE Transactions on Automatic Control.

[18]  J. Gough Quantum Stratonovich calculus and the quantum Wong-Zakai theorem , 2005, math-ph/0511046.

[19]  M. R. James,et al.  Squeezing Components in Linear Quantum Feedback Networks , 2009, 0906.4860.

[20]  Gerard J. Milburn,et al.  Quantum Measurement and Stochastic Processes in Mesoscopic Conductors , 2000 .

[21]  G. Milburn,et al.  Absorptive Quantum Measurements via Coherently Coupled Quantum Dots , 2000 .

[22]  B. M. Fulk MATH , 1992 .

[23]  Robin L. Hudson,et al.  Quantum Ito's formula and stochastic evolutions , 1984 .

[24]  Robin L. Hudson,et al.  Unification of fermion and Boson stochastic calculus , 1986 .

[25]  Hendra Ishwara Nurdin Synthesis of Linear Quantum Stochastic Systems via Quantum Feedback Networks , 2010, IEEE Transactions on Automatic Control.

[26]  S. Albeverio,et al.  Rank One Perturbations, Approximations, and Selfadjoint Extensions , 1997 .

[27]  Ieee Transactions On Automatic Control, Vol. Ac-2'7, No. 3, June 1982 , .

[28]  Rank one perturbations of not semibounded operators , 1997 .

[29]  M. R. James,et al.  Quantum Feedback Networks: Hamiltonian Formulation , 2008, 0804.3442.

[30]  Matthew R. James,et al.  The Series Product and Its Application to Quantum Feedforward and Feedback Networks , 2007, IEEE Transactions on Automatic Control.

[31]  J. Gough Causal structure of quantum stochastic integrators , 1997 .

[32]  Alexander Mikhailovich Chebotarev The quantum stochastic equation is unitarily equivalent to a symmetric boundary value problem for the Schrödinger equation , 1997 .

[33]  J. Gough,et al.  Construction of bilinear control Hamiltonians using the series product and quantum feedback , 2008, 0807.4225.

[34]  M. Yanagisawa,et al.  Linear quantum feedback networks , 2008 .

[35]  A. Tustin Automatic Control , 1951, Nature.