Reliability assessment of structures based upon probabilistic fracture mechanics

Abstract The stochastic fatigue crack growth model (termed the Tsurui-Ishikawa model) based upon the Markov approximation method introducing the notion of death point has been proposed, and a great deal of its practical usefulness in the reliability assessment of structures has been demonstrated for those cases where the fatigue crack propagation process plays a crucial role toward their failure. By performing the reliability analysis, based upon the model, in consideration of uncertainties of both initial crack length and their number, the effect of such uncertainties has been clarified on the reliability degradation of a structural component. This result is of much interest from a practical viewpoint because it gives a guideline to determine the safe life (design life or inspection interval) to assure the prescribed level of reliability for random loadings with a variety of correlation times. Further, studies have been made on which parameter is the most significant according to the problem through parameter sensitivity study. With the aid of the proposed model, reliability assurance or reliability-based design can be performed properly against fatigue failure of structures subjected to random loading.

[1]  Tada Hiroshi,et al.  A note on the finite width corrections to the stress intensity factor , 1971 .

[2]  J. L. Bogdanoff,et al.  A New Cumulative Damage Model—Part 4 , 1980 .

[3]  浩 石川 実働荷重下における機械・構造物疲労寿命の信頼性解析 (VII) , 1975 .

[4]  G. Schuëller,et al.  Time variant structural reliability analysis using diffusive crack growth models , 1989 .

[5]  Kazimierz Sobczyk,et al.  Modelling of random fatigue crack growth , 1986 .

[6]  G. I. Schuëller,et al.  Reliability of deteriorating structures , 1984 .

[7]  Akira Tsurui,et al.  Theoretical study on the distribution of fatigue crack propagation life under stationary random loading. , 1985 .

[8]  浩 石川,et al.  実働荷重下における機械・構造物疲労寿命の信頼性解析 (I) , 1975 .

[9]  G. C. Salivar,et al.  Statistical modeling of fatigue-crack growth in a nickel-base superalloy , 1983 .

[10]  Hiroaki Tanaka,et al.  Reliability degradation of structural components in the process of fatigue crack propagation under stationary random loading , 1987 .

[11]  F. Kozin,et al.  A critical analysis of some probabilistic models of fatigue crack growth , 1981 .

[12]  Tanaka Hiroaki,et al.  Random propagation of a semi-elliptical surface crack as a bivariate stochastic process , 1989 .

[13]  F. Kozin,et al.  On life behavior under spectrum loading , 1983 .

[14]  G. Solomos,et al.  First Passage Solutions in Fatigue Crack Propagation , 1989 .

[15]  F. Kozin,et al.  On Nonstationary Cumulative Damage Models , 1982 .

[16]  浩 石川 実働荷重下における機械・構造物疲労寿命の信頼性解析 (III) , 1975 .

[17]  Wen-Fang Wu,et al.  On the Markov approximation of fatigue crack growth , 1986 .

[18]  Gerhart I. Schuëller,et al.  On the failure probability of pipings , 1991 .

[19]  A Tsurui,et al.  THE SIZE EFFECT ON STATISTICAL PROPERTIES OF THE FATIGUE CRACK PROPAGATION PROCESS , 1986 .

[20]  J. Yang,et al.  On statistical moments of fatigue crack propagation , 1983 .

[21]  Takeyuki Tanaka,et al.  Probabilistic analysis of fatigue crack propagation in finite size specimens , 1989 .

[22]  昌弘 市川,et al.  疲労き裂伝ぱ法則da/dN=C(ΔK)mにおけるmとCの確率特性 , 1984 .

[23]  R. Arone A statistical model for fatigue fracture under constant-amplitude cyclic loading , 1981 .

[24]  P. C. Paris,et al.  A Critical Analysis of Crack Propagation Laws , 1963 .

[25]  F. Kozin,et al.  On the probabilistic modeling of fatigue crack growth , 1983 .

[26]  G. I. Schuëller,et al.  Time-variant structural reliability analysis using bivariate diffusive crack growth models , 1990 .

[27]  H. Saunders,et al.  Probabilistic models of cumulative damage , 1985 .

[28]  Ove Ditlevsen,et al.  Random fatigue crack growth—a first passage problem , 1986 .

[29]  J. Rice,et al.  Elementary engineering fracture mechanics , 1974 .

[30]  Anne S. Kiremidjian,et al.  A semi-Markovian model for low-cycle elastic-plastic fatigue crack growth , 1989 .

[31]  Hamouda Ghonem,et al.  Probabilistic description of fatigue crack growth in polycrystalline solids , 1985 .

[32]  Akira Tsurui,et al.  On the reliability degradation in the process of fatigue crack propagation. , 1985 .

[33]  浩 石川 実働荷重下における機械・構造物疲労寿命の信頼性解析 (V) , 1975 .

[34]  Anne S. Kiremidjian,et al.  Stochastic modeling of fatigue crack growth , 1988 .

[35]  浩 石川 実働荷重下における機械・構造物疲労寿命の信頼性解柝 (II) , 1975 .

[36]  Hiroshi Ishikawa,et al.  Some Aspects of Structural Reliability Assurance for Random Excitation Processes , 1989 .

[37]  Akira Tsurui,et al.  Application of the Fokker-Planck equation to a stochastic fatigue crack growth model , 1986 .

[38]  Billie F. Spencer,et al.  Reliability solution for the stochastic fatigue crack growth problem , 1989 .

[39]  浩 石川 実働荷重下における機械・構造物疲労寿命の信頼性解析 (IV) , 1975 .