System identification of nonlinear state-space models
暂无分享,去创建一个
[1] A. Rollett,et al. The Monte Carlo Method , 2004 .
[2] S. Duncan,et al. Using the EM algorithm to estimate the disease parameters for smallpox in 17th century London , 2006, 2006 IEEE Conference on Computer Aided Control System Design, 2006 IEEE International Conference on Control Applications, 2006 IEEE International Symposium on Intelligent Control.
[3] Sten Bay Jørgensen,et al. Parameter estimation in stochastic grey-box models , 2004, Autom..
[4] Lennart Ljung,et al. Guest Editorial: Special Issue on System Identification , 2005, IEEE Trans. Autom. Control..
[5] Thomas B. Schön,et al. Parameter Estimation for Discrete-Time Nonlinear Systems Using EM , 2008 .
[6] John E. Dennis,et al. Numerical methods for unconstrained optimization and nonlinear equations , 1983, Prentice Hall series in computational mathematics.
[7] A. Doucet,et al. Smoothing algorithms for state–space models , 2010 .
[8] A. Doucet,et al. Parameter estimation in general state-space models using particle methods , 2003 .
[9] Torsten P. Bohlin,et al. Practical Grey-box Process Identification: Theory and Applications , 2006 .
[10] T. Başar,et al. A New Approach to Linear Filtering and Prediction Problems , 2001 .
[11] A. Rama Kalyan,et al. Systems and control engineering , 1999 .
[12] Brian D. Ripley,et al. Stochastic Simulation , 2005 .
[13] S. Haykin. Kalman Filtering and Neural Networks , 2001 .
[14] I. J. Leontaritis,et al. Input-output parametric models for non-linear systems Part II: stochastic non-linear systems , 1985 .
[15] Simon J. Godsill,et al. On sequential Monte Carlo sampling methods for Bayesian filtering , 2000, Stat. Comput..
[16] D. Rubin,et al. Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .
[17] P. Fearnhead,et al. A sequential smoothing algorithm with linear computational cost. , 2010 .
[18] Kunio Takezawa. Whiley Series in Probability and Statistics , 2005 .
[19] Timothy J. Robinson,et al. Sequential Monte Carlo Methods in Practice , 2003 .
[20] Y. Bresler. Two-filter formulae for discrete-time non-linear bayesian smoothing , 1986 .
[21] Richard D. Braatz,et al. On the "Identification and control of dynamical systems using neural networks" , 1997, IEEE Trans. Neural Networks.
[22] Thomas Bo Schön,et al. Maximum Likelihood Nonlinear System Estimation , 2006 .
[23] R. B. Gopaluni. Identification of Nonlinear Processes with known Model Structure Under Missing Observations , 2008 .
[24] Neil J. Gordon,et al. Editors: Sequential Monte Carlo Methods in Practice , 2001 .
[25] A. Jazwinski. Stochastic Processes and Filtering Theory , 1970 .
[26] G.C. Goodwin,et al. Approximate EM Algorithms for Parameter and State Estimation in Nonlinear Stochastic Models , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.
[27] Brett Ninness,et al. Robust maximum-likelihood estimation of multivariable dynamic systems , 2005, Autom..
[28] Margaret H. Wright,et al. Direct search methods: Once scorned, now respectable , 1996 .
[29] Gianluigi Pillonetto,et al. Optimal smoothing of non-linear dynamic systems via Monte Carlo Markov chains , 2008, Autom..
[30] N. Metropolis,et al. Equation of State Calculations by Fast Computing Machines , 1953, Resonance.
[31] K. Poolla,et al. New results for Hammerstein system identification , 1995, Proceedings of 1995 34th IEEE Conference on Decision and Control.
[32] A. Doucet,et al. Monte Carlo Smoothing for Nonlinear Time Series , 2004, Journal of the American Statistical Association.
[33] G. McLachlan,et al. The EM algorithm and extensions , 1996 .
[34] Zoubin Ghahramani,et al. Learning Nonlinear Dynamical Systems Using an EM Algorithm , 1998, NIPS.
[35] New York Dover,et al. ON THE CONVERGENCE PROPERTIES OF THE EM ALGORITHM , 1983 .
[36] Christophe Andrieu,et al. Particle methods for change detection, system identification, and control , 2004, Proceedings of the IEEE.
[37] D. Stoffer,et al. Fitting Stochastic Volatility Models in the Presence of Irregular Sampling via Particle Methods and the EM Algorithm , 2008 .
[38] G. Kitagawa. A self-organizing state-space model , 1998 .
[39] T. Westerlund,et al. Remarks on "Asymptotic behavior of the extended Kalman filter as a parameter estimator for linear systems" , 1980 .
[40] Brett Ninness,et al. Strong laws of large numbers under weak assumptions with application , 2000, IEEE Trans. Autom. Control..
[41] Peter Salamon,et al. Facts, Conjectures, and Improvements for Simulated Annealing , 1987 .
[42] Xiao-Li Hu,et al. A Basic Convergence Result for Particle Filtering , 2008, IEEE Transactions on Signal Processing.
[43] R. B. Gopaluni. A particle filter approach to identification of nonlinear processes under missing observations , 2008 .
[44] Brett Ninness,et al. Maximum-likelihood parameter estimation of bilinear systems , 2005, IEEE Transactions on Automatic Control.
[45] Petre Stoica,et al. Decentralized Control , 2018, The Control Systems Handbook.
[46] N. Gordon,et al. Novel approach to nonlinear/non-Gaussian Bayesian state estimation , 1993 .
[47] W. Ames. Mathematics in Science and Engineering , 1999 .
[48] Petros G. Voulgaris,et al. On optimal ℓ∞ to ℓ∞ filtering , 1995, Autom..
[49] Lennart Ljung,et al. Perspectives on system identification , 2010, Annu. Rev. Control..
[50] Lennart Ljung,et al. System Identification: Theory for the User , 1987 .
[51] R. E. Kalman,et al. A New Approach to Linear Filtering and Prediction Problems , 2002 .
[52] Winson Taam,et al. Nonlinear System Analysis and Identification From Random Data , 1991 .
[53] S. Roweis,et al. Learning Nonlinear Dynamical Systems Using the Expectation–Maximization Algorithm , 2001 .
[54] K. Lange. A gradient algorithm locally equivalent to the EM algorithm , 1995 .
[55] Thomas Bo Schön,et al. Particle Filters for System Identification of State-Space Models Linear in Either Parameters or States , 2003 .