T-cell epitope prediction and immune complex simulation using molecular dynamics: state of the art and persisting challenges

Atomistic Molecular Dynamics provides powerful and flexible tools for the prediction and analysis of molecular and macromolecular systems. Specifically, it provides a means by which we can measure theoretically that which cannot be measured experimentally: the dynamic time-evolution of complex systems comprising atoms and molecules. It is particularly suitable for the simulation and analysis of the otherwise inaccessible details of MHC-peptide interaction and, on a larger scale, the simulation of the immune synapse. Progress has been relatively tentative yet the emergence of truly high-performance computing and the development of coarse-grained simulation now offers us the hope of accurately predicting thermodynamic parameters and of simulating not merely a handful of proteins but larger, longer simulations comprising thousands of protein molecules and the cellular scale structures they form. We exemplify this within the context of immunoinformatics.

[1]  Mark M Davis,et al.  T cells as a self-referential, sensory organ. , 2007, Annual review of immunology.

[2]  Rino Rappuoli,et al.  Post‐genomic vaccine development , 2006, FEBS letters.

[3]  J. Stewart Optimization of parameters for semiempirical methods II. Applications , 1989 .

[4]  C. DeLisi,et al.  Role of conserved regions of class I MHC molecules in the activation of CD8+ cytotoxic T lymphocytes by peptide and purified cell-free class I molecules. , 1993, International immunology.

[5]  M. Dewar,et al.  Ground States of Molecules. 38. The MNDO Method. Approximations and Parameters , 1977 .

[6]  Samuel Genheden,et al.  How to obtain statistically converged MM/GBSA results , 2009, J. Comput. Chem..

[7]  B. Berne Modification of the overlap potential to mimic a linear site-site potential , 1981 .

[8]  Nikolai Petrovsky,et al.  Immunome Research , 2005, Immunome research.

[9]  Weitao Yang,et al.  A Linear-Scaling Quantum Mechanical Investigation of Cytidine Deaminase , 1999 .

[10]  B. Maillère,et al.  3-Layer-based analysis of peptide-MHC interaction: in silico prediction, peptide binding affinity and T cell activation in a relevant allergen-specific model. , 2009, Molecular immunology.

[11]  Bernhard Knapp,et al.  A critical cross-validation of high throughput structural binding prediction methods for pMHC , 2009, J. Comput. Aided Mol. Des..

[12]  D. Bashford,et al.  Solvation energy density occlusion approximation for evaluation of desolvation penalties in biomolecular interactions , 2001, Proteins.

[13]  Jay T. Groves,et al.  Synaptic pattern formation during cellular recognition , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[14]  R. Dror,et al.  Long-timescale molecular dynamics simulations of protein structure and function. , 2009, Current opinion in structural biology.

[15]  D. Rognan,et al.  Predicting binding affinities of protein ligands from three-dimensional models: application to peptide binding to class I major histocompatibility proteins. , 1999, Journal of medicinal chemistry.

[16]  D. Truhlar,et al.  QM/MM: what have we learned, where are we, and where do we go from here? , 2007 .

[17]  Mark M Davis,et al.  How T cells 'see' antigen , 2005, Nature Immunology.

[18]  C A Floudas,et al.  A predictive method for the evaluation of peptide binding in pocket 1 of HLA‐DRB1 via global minimization of energy interactions , 1997, Proteins.

[19]  Jürgen Schlitter,et al.  Targeted Molecular Dynamics Simulation of Conformational Change-Application to the T ↔ R Transition in Insulin , 1993 .

[20]  Peter V Coveney,et al.  Molecular dynamics simulations: bring biomolecular structures alive on a computer. , 2007, Methods in molecular biology.

[21]  Alexander D. MacKerell,et al.  Comparison of protein force fields for molecular dynamics simulations. , 2008, Methods in molecular biology.

[22]  A Caflisch,et al.  Monte Carlo docking of oligopeptides to proteins , 1992, Proteins.

[23]  Matthew N Davies,et al.  Harnessing bioinformatics to discover new vaccines. , 2007, Drug discovery today.

[24]  Eamonn F. Healy,et al.  Development and use of quantum mechanical molecular models. 76. AM1: a new general purpose quantum mechanical molecular model , 1985 .

[25]  Jianpeng Ma,et al.  Usefulness and limitations of normal mode analysis in modeling dynamics of biomolecular complexes. , 2005, Structure.

[26]  Gerhard Hummer,et al.  Kinetics from nonequilibrium single-molecule pulling experiments. , 2003, Biophysical journal.

[27]  S. Bromley,et al.  The immunological synapse: a molecular machine controlling T cell activation. , 1999, Science.

[28]  Rino Rappuoli,et al.  Vaccinology in the genome era. , 2009, The Journal of clinical investigation.

[29]  Walter Thiel,et al.  Ground States of Molecules. 38. The MNDO Method. Approximations and Parameters , 1977 .

[30]  Federico Fogolari,et al.  Protocol for MM/PBSA molecular dynamics simulations of proteins. , 2003, Biophysical journal.

[31]  Vladimir Brusic,et al.  Evaluation of MHC-II peptide binding prediction servers: applications for vaccine research , 2008, BMC Bioinformatics.

[32]  K. Schulten,et al.  Calculating potentials of mean force from steered molecular dynamics simulations. , 2004, The Journal of chemical physics.

[33]  Mark C Evans,et al.  Recent advances in immunoinformatics: application of in silico tools to drug development. , 2008, Current opinion in drug discovery & development.

[34]  Klaus Schulten,et al.  Atomic-level structural and functional model of a bacterial photosynthetic membrane vesicle , 2007, Proceedings of the National Academy of Sciences.

[35]  Junmei Wang,et al.  Development and testing of a general amber force field , 2004, J. Comput. Chem..

[36]  Daniel Coombs,et al.  Equilibrium thermodynamics of cell-cell adhesion mediated by multiple ligand-receptor pairs. , 2004, Biophysical journal.

[37]  Mark M Davis,et al.  Dynamics of cell surface molecules during T cell recognition. , 2003, Annual review of biochemistry.

[38]  Alexander D. MacKerell,et al.  Determination of Electrostatic Parameters for a Polarizable Force Field Based on the Classical Drude Oscillator. , 2005, Journal of chemical theory and computation.

[39]  Gerhard Hummer,et al.  Extracting kinetics from single-molecule force spectroscopy: nanopore unzipping of DNA hairpins. , 2007, Biophysical journal.

[40]  D. Rognan,et al.  Customized versus universal scoring functions: application to class I MHC-peptide binding free energy predictions. , 2001, Bioorganic & medicinal chemistry letters.

[41]  Anne S De Groot,et al.  Immunomics: discovering new targets for vaccines and therapeutics. , 2006, Drug discovery today.

[42]  C DeLisi,et al.  TcR recognition of the MHC-peptide dimer: structural properties of a ternary complex. , 1996, Journal of molecular biology.

[43]  D. Rognan,et al.  Rational design of nonnatural peptides as high-affinity ligands for the HLA-B*2705 human leukocyte antigen. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[44]  K. Kim,et al.  Selection of peptides that bind to the HLA-A2.1 molecule by molecular modelling. , 1996, Molecular immunology.

[45]  C. DeLisi,et al.  Free energy mapping of class I MHC molecules and structural determination of bound peptides , 1996, Protein science : a publication of the Protein Society.

[46]  Seema Mishra,et al.  Immunoinformatics and Modeling Perspective of T Cell Epitope-Based Cancer Immunotherapy: A Holistic Picture , 2009, Journal of biomolecular structure & dynamics.

[47]  P. Krüger,et al.  Targeted molecular dynamics: a new approach for searching pathways of conformational transitions. , 1994, Journal of molecular graphics.

[48]  Markus Christen,et al.  The GROMOS software for biomolecular simulation: GROMOS05 , 2005, J. Comput. Chem..

[49]  Martin Zacharias,et al.  Flexibility of the MHC class II peptide binding cleft in the bound, partially filled, and empty states: a molecular dynamics simulation study. , 2009, Biopolymers.

[50]  Laxmikant V. Kalé,et al.  Scalable molecular dynamics with NAMD , 2005, J. Comput. Chem..

[51]  Laura Serino,et al.  Genome-based approaches to develop vaccines against bacterial pathogens. , 2009, Vaccine.

[52]  Darren R Flower,et al.  Immunoinformatics and the in silico prediction of immunogenicity. An introduction. , 2007, Methods in molecular biology.

[53]  P. He,et al.  QM/MM Study of Epitope Peptides Binding to HLA‐A*0201: The Roles of Anchor Residues and Water , 2009, Chemical biology & drug design.

[54]  Channa K. Hattotuwagama,et al.  Receptor-ligand binding sites and virtual screening. , 2006, Current medicinal chemistry.

[55]  G. Holdgate,et al.  Isothermal titration calorimetry in drug discovery. , 2001, Progress in medicinal chemistry.

[56]  Tin Wee Tan,et al.  In silico characterization of immunogenic epitopes presented by HLA-Cw*0401 , 2007, Immunome research.

[57]  E. Lewis,et al.  Isothermal titration calorimetry: experimental design, data analysis, and probing macromolecule/ligand binding and kinetic interactions. , 2008, Methods in cell biology.

[58]  P. Coveney,et al.  Toward an atomistic understanding of the immune synapse: large-scale molecular dynamics simulation of a membrane-embedded TCR-pMHC-CD4 complex. , 2008, Molecular immunology.

[59]  C. Carter,et al.  Active Species for the Ground-State Complex of Cytidine Deaminase: A Linear-Scaling Quantum Mechanical Investigation , 1998 .

[60]  Reinhard Lipowsky,et al.  Pattern formation during T-cell adhesion. , 2004, Biophysical journal.

[61]  J. Agrewala,et al.  In silico methods for predicting T-cell epitopes: Dr Jekyll or Mr Hyde? , 2009, Expert review of proteomics.

[62]  Peter A. Kollman,et al.  AMBER: Assisted model building with energy refinement. A general program for modeling molecules and their interactions , 1981 .

[63]  D Rognan,et al.  Molecular dynamics simulation of MHC-peptide complexes as a tool for predicting potential T cell epitopes. , 1994, Biochemistry.

[64]  B Honig,et al.  On the calculation of binding free energies using continuum methods: Application to MHC class I protein‐peptide interactions , 1997, Protein science : a publication of the Protein Society.

[65]  R. Rappuoli,et al.  Vaccines in the era of genomics: the pneumococcal challenge. , 2007, Vaccine.

[66]  D. Flower,et al.  Benchmarking B cell epitope prediction: Underperformance of existing methods , 2005, Protein science : a publication of the Protein Society.

[67]  Alexander D. MacKerell,et al.  CHARMM general force field: A force field for drug‐like molecules compatible with the CHARMM all‐atom additive biological force fields , 2009, J. Comput. Chem..

[68]  K Y Sanbonmatsu,et al.  High performance computing in biology: multimillion atom simulations of nanoscale systems. , 2007, Journal of structural biology.

[69]  R. Ferrando,et al.  Collective and single particle diffusion on surfaces , 2002 .

[70]  P. Kollman,et al.  A Second Generation Force Field for the Simulation of Proteins, Nucleic Acids, and Organic Molecules J. Am. Chem. Soc. 1995, 117, 5179−5197 , 1996 .

[71]  Martin Zacharias,et al.  Peptide binding to MHC class I and II proteins: new avenues from new methods. , 2010, Molecular immunology.

[72]  S Vajda,et al.  Flexible docking of peptides to class I major-histocompatibility-complex receptors. , 1995, Genetic analysis : biomolecular engineering.

[73]  Tai-Sung Lee,et al.  Linear-scaling quantum mechanical calculations of biological molecules: The divide-and-conquer approach , 1998 .

[74]  Walter Filgueira de Azevedo,et al.  Experimental approaches to evaluate the thermodynamics of protein-drug interactions. , 2008, Current drug targets.

[75]  Anthony Cruz,et al.  Model for the Peptide-Free Conformation of Class II MHC Proteins , 2008, PloS one.

[76]  Helmut Grubmüller,et al.  Molecular Anatomy of a Trafficking Organelle , 2006, Cell.

[77]  G. Hummer,et al.  Theory, analysis, and interpretation of single-molecule force spectroscopy experiments , 2008, Proceedings of the National Academy of Sciences.

[78]  Olivier Michielin,et al.  Binding free energy differences in a TCR-peptide-MHC complex induced by a peptide mutation: a simulation analysis. , 2002, Journal of molecular biology.

[79]  Ying Xu,et al.  Limitations of Ab Initio Predictions of Peptide Binding to MHC Class II Molecules , 2010, PloS one.

[80]  Anne S De Groot,et al.  From genome to vaccine--new immunoinformatics tools for vaccine design. , 2004, Methods.

[81]  Henry S. Rzepa,et al.  Ground states of molecules: Part XLII. Vibrational frequencies of isotopically-substituted molecules calculated using MINDO/3 force constants , 1977 .

[82]  Uthaman Gowthaman,et al.  In silico tools for predicting peptides binding to HLA-class II molecules: more confusion than conclusion. , 2008, Journal of proteome research.

[83]  Alexander D. MacKerell,et al.  Computational evaluation of protein-small molecule binding. , 2009, Current opinion in structural biology.

[84]  M Karplus,et al.  Modeling of the TCR-MHC-peptide complex. , 2000, Journal of molecular biology.

[85]  Jianpeng Ma,et al.  CHARMM: The biomolecular simulation program , 2009, J. Comput. Chem..

[86]  Vasant Honavar,et al.  On Evaluating MHC-II Binding Peptide Prediction Methods , 2008, PloS one.

[87]  R. Jernigan,et al.  Residue-residue potentials with a favorable contact pair term and an unfavorable high packing density term, for simulation and threading. , 1996, Journal of molecular biology.

[88]  A Sette,et al.  A structure-based algorithm to predict potential binding peptides to MHC molecules with hydrophobic binding pockets. , 1997, Human immunology.

[89]  Peter V. Coveney,et al.  Automated Molecular Simulation Based Binding Affinity Calculator for Ligand-Bound HIV-1 Proteases , 2008, J. Chem. Inf. Model..

[90]  Darren R. Flower,et al.  Bioinformatics for Vaccinology , 2008 .

[91]  K. Schulten,et al.  Free energy calculation from steered molecular dynamics simulations using Jarzynski's equality , 2003 .

[92]  G. Hummer,et al.  Free energy reconstruction from nonequilibrium single-molecule pulling experiments , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[93]  D. Rognan,et al.  An HLA-B27 polymorphism (B*2710) that is critical for T-cell recognition has limited effects on peptide specificity. , 1998, Tissue antigens.

[94]  H. Margalit,et al.  Ranking potential binding peptides to MHC molecules by a computational threading approach. , 1995, Journal of molecular biology.

[95]  J. Valverde Molecular Modelling: Principles and Applications , 2001 .

[96]  Joo Chuan Tong,et al.  Immunoinformatics: Current trends and future directions , 2009, Drug Discovery Today.

[97]  V. Brusic,et al.  Evaluation of MHC class I peptide binding prediction servers: Applications for vaccine research , 2008, BMC Immunology.

[98]  James J. P. Stewart,et al.  Development and use of quantum mechanical molecular models. 76. AM1: a new general purpose quantum mechanical molecular model. [Erratum to document cited in CA103(2):11627f] , 1993 .

[99]  D. Flower,et al.  Static energy analysis of MHC class I and class II peptide-binding affinity. , 2007, Methods in molecular biology.

[100]  C. DeLisi,et al.  Computing the structure of bound peptides. Application to antigen recognition by class I major histocompatibility complex receptors. , 1993, Journal of molecular biology.

[101]  Peter L. Freddolino,et al.  Molecular dynamics simulations of the complete satellite tobacco mosaic virus. , 2006, Structure.

[102]  J. Berg,et al.  Molecular dynamics simulations of biomolecules , 2002, Nature Structural Biology.

[103]  Review of ”Bioinformatics for vaccinology“ edited by Darren R. Flower , 2009, Virology Journal.

[104]  D Rognan,et al.  Molecular modeling of an antigenic complex between a viral peptide and a class I major histocompatibility glycoprotein , 1992, Proteins.

[105]  H Liu,et al.  Rapid non-empirical approaches for estimating relative binding free energies. , 1995, Acta biochimica Polonica.

[106]  C DeLisi,et al.  Computational determination of side chain specificity for pockets in class I MHC molecules. , 1996, Molecular immunology.

[107]  R. Rappuoli,et al.  Genome‑based vaccine development: A short cut for the future , 2008, Human vaccines.

[108]  P. Coveney,et al.  Molecular Basis of Peptide Recognition by the TCR: Affinity Differences Calculated Using Large Scale Computing1 , 2005, The Journal of Immunology.

[109]  S Vajda,et al.  Toward computational determination of peptide‐receptor structure , 1993, Protein science : a publication of the Protein Society.

[110]  A. Giuliani,et al.  A computational approach identifies two regions of Hepatitis C Virus E1 protein as interacting domains involved in viral fusion process , 2009, BMC Structural Biology.

[111]  Didier Rognan,et al.  Fine specificity of antigen binding to two class I major histocompatibility proteins (B*2705 and B*2703) differing in a single amino acid residue , 1997, J. Comput. Aided Mol. Des..

[112]  A. Liwo,et al.  Computational techniques for efficient conformational sampling of proteins. , 2008, Current opinion in structural biology.

[113]  T. Auton,et al.  Statistical comparison of established T-cell epitope predictors against a large database of human and murine antigens. , 1996, Molecular immunology.

[114]  Martin Zacharias,et al.  Conformational flexibility of the MHC class I alpha1-alpha2 domain in peptide bound and free states: a molecular dynamics simulation study. , 2004, Biophysical journal.

[115]  P. Tavan,et al.  Ligand Binding: Molecular Mechanics Calculation of the Streptavidin-Biotin Rupture Force , 1996, Science.

[116]  J. Stewart Optimization of parameters for semiempirical methods I. Method , 1989 .

[117]  Karl F Freed,et al.  All‐atom fast protein folding simulations: The villin headpiece , 2002, Proteins.

[118]  C DeLisi,et al.  Graphical representations of the class I MHC cleft. , 1993, Journal of molecular graphics.

[119]  Minoru Sakurai,et al.  Application of an integrated MOZYME+DFT method to pKa calculations for proteins , 2001 .

[120]  Gamze Gürsoy,et al.  Mechanical Signaling on the Single Protein Level Studied Using Steered Molecular Dynamics , 2009, Cell Biochemistry and Biophysics.

[121]  C DeLisi,et al.  Structural principles that govern the peptide-binding motifs of class I MHC molecules. , 1998, Journal of molecular biology.

[122]  Claudio Donati,et al.  Microbial genomes and vaccine design: refinements to the classical reverse vaccinology approach. , 2006, Current opinion in microbiology.

[123]  J L Cornette,et al.  Consistency in structural energetics of protein folding and peptide recognition , 1997, Protein science : a publication of the Protein Society.

[124]  Rino Rappuoli,et al.  The use of genomics in microbial vaccine development , 2009, Drug Discovery Today.

[125]  Mark M. Davis,et al.  Direct observation of ligand recognition by T cells , 2002, Nature.

[126]  Volodymyr V. Kindratenko,et al.  Implementation of NAMD molecular dynamics non-bonded force-field on the cell broadband engine processor , 2008, 2008 IEEE International Symposium on Parallel and Distributed Processing.

[127]  Laxmikant V. Kalé,et al.  NAMD: a Parallel, Object-Oriented Molecular Dynamics Program , 1996, Int. J. High Perform. Comput. Appl..

[128]  S Vajda,et al.  Effect of conformational flexibility and solvation on receptor-ligand binding free energies. , 1994, Biochemistry.

[129]  Olivier Michielin,et al.  Protein-protein interaction investigated by steered molecular dynamics: the TCR-pMHC complex. , 2008, Biophysical journal.

[130]  Peter V Coveney,et al.  Peptide recognition by the T cell receptor: comparison of binding free energies from thermodynamic integration, Poisson–Boltzmann and linear interaction energy approximations , 2005, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[131]  M. Zacharias,et al.  Conformational flexibility of the MHC class I alpha1-alpha2 domain in peptide bound and free states: a molecular dynamics simulation study. , 2004, Biophysical journal.

[132]  Shunzhou Wan,et al.  Large‐scale molecular dynamics simulations of HLA‐A*0201 complexed with a tumor‐specific antigenic peptide: Can the α3 and β2m domains be neglected? , 2004, J. Comput. Chem..

[133]  P. Kollman,et al.  A Second Generation Force Field for the Simulation of Proteins, Nucleic Acids, and Organic Molecules , 1995 .

[134]  Norman L. Allinger,et al.  Molecular mechanics. The MM3 force field for hydrocarbons. 1 , 1989 .

[135]  O. Schueler‐Furman,et al.  Structure‐based prediction of binding peptides to MHC class I molecules: Application to a broad range of MHC alleles , 2000, Protein science : a publication of the Protein Society.

[136]  Arup K Chakraborty,et al.  The Immunological Synapse Balances T Cell Receptor Signaling and Degradation , 2003, Science.

[137]  Morten Nielsen,et al.  A Community Resource Benchmarking Predictions of Peptide Binding to MHC-I Molecules , 2006, PLoS Comput. Biol..

[138]  James J. P. Stewart,et al.  Application of the PM6 method to modeling proteins , 2009, Journal of molecular modeling.

[139]  S Vajda,et al.  Prediction of protein complexes using empirical free energy functions , 1996, Protein science : a publication of the Protein Society.

[140]  Peter V. Coveney,et al.  Real science at the petascale , 2009, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[141]  D. Rognan,et al.  Molecular dynamics and structure-based drug design for predicting non-natural nonapeptide binding to a class I MHC protein. , 1995, Acta crystallographica. Section D, Biological crystallography.

[142]  Kurt Kremer,et al.  Bridging the Gap Between Atomistic and Coarse-Grained Models of Polymers: Status and Perspectives , 2000 .

[143]  P. Kollman,et al.  New-generation amber united-atom force field. , 2006, The journal of physical chemistry. B.

[144]  Takuya Takahashi,et al.  Prediction of T-cell epitope. , 2007, Journal of pharmacological sciences.

[145]  Darren R Flower,et al.  Towards in silico prediction of immunogenic epitopes. , 2003, Trends in immunology.

[146]  Karina Yusim,et al.  Immunoinformatics Comes of Age , 2006, PLoS Comput. Biol..