Fast pattern recognition using normalized grey-scale correlation in a pyramid image representation

The ability to quickly locate one or more instances of a model in a grey scale image is of importance to industry. The recognition/localization must be fast and accurate. In this paper we present an algorithm which incorporates normalized correlation into a pyramid image representation structure to perform fast recognition and localization. The algorithm employs an estimate of the gradient of the correlation surface to perform a steepest descent search. Test results are given detailing search time by target size, effect of rotation and scale changes on performance, and accuracy of the subpixel localization algorithm used in the algorithm. Finally, results are given for searches on real images with perspective distortion and the addition of Gaussian noise.

[1]  Gustavo Carneiro,et al.  Multi-scale phase-based local features , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[2]  Arun D. Kulkarni Artificial neural networks for image understanding , 1994, VNR computer library.

[3]  Adam Baumberg,et al.  Reliable feature matching across widely separated views , 2000, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662).

[4]  Peter J. Burt,et al.  Attention mechanisms for vision in a dynamic world , 1988, [1988 Proceedings] 9th International Conference on Pattern Recognition.

[5]  W. Eric L. Grimson,et al.  Object Detection and Localization by Dynamic Template Warping , 1998, Proceedings. 1998 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No.98CB36231).

[6]  Harry Wechsler,et al.  2-D Invariant Object Recognition Using Distributed Associative Memory , 1988, IEEE Trans. Pattern Anal. Mach. Intell..

[7]  Alex Pentland,et al.  Photobook: Content-based manipulation of image databases , 1996, International Journal of Computer Vision.

[8]  Tony Lindeberg,et al.  Scale-Space Theory in Computer Vision , 1993, Lecture Notes in Computer Science.

[9]  W. Eric L. Grimson,et al.  Similarity templates for detection and recognition , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[10]  Ming-Kuei Hu,et al.  Visual pattern recognition by moment invariants , 1962, IRE Trans. Inf. Theory.

[11]  A. Ardeshir Goshtasby,et al.  Template Matching in Rotated Images , 1985, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[12]  John K. Tsotsos,et al.  Fast pattern recognition using gradient-descent search in an image pyramid , 2000, Proceedings 15th International Conference on Pattern Recognition. ICPR-2000.

[13]  Michael A. Greenspan Geometric Probing of Dense Range Data , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[14]  Paul Wintz,et al.  Digital image processing (2nd ed.) , 1987 .

[15]  James J. Little,et al.  Mobile Robot Localization and Mapping with Uncertainty using Scale-Invariant Visual Landmarks , 2002, Int. J. Robotics Res..

[16]  Harry Wechsler,et al.  Distributed Associative Memory (DAM) for Bin-Picking , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[17]  SchmidCordelia,et al.  A Performance Evaluation of Local Descriptors , 2005 .

[18]  G LoweDavid,et al.  Distinctive Image Features from Scale-Invariant Keypoints , 2004 .

[19]  C. Schmid,et al.  Indexing based on scale invariant interest points , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[20]  Anil K. Jain,et al.  Shape-Based Retrieval: A Case Study With Trademark Image Databases , 1998, Pattern Recognit..

[21]  David G. Lowe,et al.  Object recognition from local scale-invariant features , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[22]  William K. Pratt,et al.  Digital image processing (2nd ed.) , 1991 .

[23]  Hampapuram K. Ramapriyan A Multilevel Approach to Sequential Detection of Pictorial Features , 1976, IEEE Transactions on Computers.

[24]  Cordelia Schmid,et al.  A Performance Evaluation of Local Descriptors , 2005, IEEE Trans. Pattern Anal. Mach. Intell..

[25]  Babu M. Mehtre,et al.  Content-based retrieval for trademark registration , 1996, Multimedia Tools and Applications.

[26]  Whoi-Yul Kim,et al.  Content-based trademark retrieval system using visually salient features , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[27]  Gérard G. Medioni,et al.  Finding Waldo, or Focus of Attention Using Local Color Information , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[28]  Cordelia Schmid,et al.  An Affine Invariant Interest Point Detector , 2002, ECCV.

[29]  W. Eric L. Grimson,et al.  Prototype optimization for nearest-neighbor classification , 2002, Pattern Recognit..

[30]  Azriel Rosenfeld,et al.  A Pyramid Framework for Early Vision: Multiresolutional Computer Vision , 1993 .

[31]  Andrew Zisserman,et al.  Object Level Grouping for Video Shots , 2004, International Journal of Computer Vision.

[32]  Peter J. Burt,et al.  A VLSI pyramid chip for multiresolution image analysis , 1992, International Journal of Computer Vision.

[33]  Azriel Rosenfeld,et al.  A Pyramid Framework for Early Vision , 1994 .

[34]  Christopher G. Harris,et al.  A Combined Corner and Edge Detector , 1988, Alvey Vision Conference.

[35]  Alex Pentland,et al.  Probabilistic object recognition and localization , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[36]  Cordelia Schmid,et al.  A Comparison of Affine Region Detectors , 2005, International Journal of Computer Vision.

[37]  Alex Pentland,et al.  Flexible Images: Matching and Recognition Using Learned Deformations , 1997, Comput. Vis. Image Underst..

[38]  M. Turk,et al.  Eigenfaces for Recognition , 1991, Journal of Cognitive Neuroscience.

[39]  Marco La Cascia,et al.  Unifying Textual and Visual Cues for Content-Based Image Retrieval on the World Wide Web , 1999, Comput. Vis. Image Underst..

[40]  Hiroshi Murase,et al.  Visual learning and recognition of 3-d objects from appearance , 2005, International Journal of Computer Vision.

[41]  Cordelia Schmid,et al.  Scale & Affine Invariant Interest Point Detectors , 2004, International Journal of Computer Vision.

[42]  Gérard G. Medioni,et al.  Finding Waldo, or focus of attention using local color information , 1993, Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

[43]  Y. J. Tejwani,et al.  Robot vision , 1989, IEEE International Symposium on Circuits and Systems,.