Ambient RF energy harvesting system: a review on integrated circuit design

This paper presents a comprehensive review of ambient RF energy harvester circuitry working on integrated circuits. The review covers 3 main blocks in an RF energy harvesting system implemented on chip. The blocks are the rectifier, impedance matching circuit and power management unit. The review of each block includes its operational principle, reported state-of-the-art circuit enhancement techniques, and design trade-offs. We compare the circuits in each block with respect to the techniques adopted to improve the performances for RF energy harvesting. To identify the benefits and limitations associated with the architecture we discuss the advantages and disadvantages of the circuit topologies in each block of an ambient RF energy harvester.

[1]  Ilangko Balasingham,et al.  Antennas and circuits for ambient RF energy harvesting in wireless body area networks , 2013, 2013 IEEE 24th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC).

[2]  D. Yamazaki,et al.  A Passive UHF RF Identification CMOS Tag IC Using Ferroelectric RAM in 0.35-$\mu{\hbox {m}}$ Technology , 2007, IEEE Journal of Solid-State Circuits.

[3]  H.T. Friis,et al.  A Note on a Simple Transmission Formula , 1946, Proceedings of the IRE.

[4]  Waleed Khalil,et al.  Self-Biased Differential Rectifier With Enhanced Dynamic Range for Wireless Powering , 2017, IEEE Transactions on Circuits and Systems II: Express Briefs.

[5]  Denis Flandre,et al.  Automated Design of a 13.56 MHz 19 µW Passive Rectifier With 72% Efficiency Under 10 µA load , 2016, IEEE Journal of Solid-State Circuits.

[6]  Gerald Holweg,et al.  An Electro-Magnetic Energy Harvesting System With 190 nW Idle Mode Power Consumption for a BAW Based Wireless Sensor Node , 2011, IEEE Journal of Solid-State Circuits.

[7]  Ke Wu,et al.  High-Efficiency Wideband Rectifier for Single-Chip Batteryless Active Millimeter-Wave Identification (MMID) Tag in 65-nm Bulk CMOS Technology , 2014, IEEE Transactions on Microwave Theory and Techniques.

[8]  Zheng Zhong,et al.  Enhanced Dual-Band Ambient RF Energy Harvesting With Ultra-Wide Power Range , 2015, IEEE Microwave and Wireless Components Letters.

[9]  Chi-Ying Tsui,et al.  Analysis and Design Strategy of UHF Micro-Power CMOS Rectifiers for Micro-Sensor and RFID Applications , 2007, IEEE Transactions on Circuits and Systems I: Regular Papers.

[10]  Zahra Safarian,et al.  Wirelessly Powered Passive Systems With Dynamic Energy Storage Mechanism , 2014, IEEE Transactions on Microwave Theory and Techniques.

[11]  Ahmadreza Rofougaran,et al.  High-Efficiency Millimeter-Wave Energy-Harvesting Systems With Milliwatt-Level Output Power , 2017, IEEE Transactions on Circuits and Systems II: Express Briefs.

[12]  Zuo-Min Tsai,et al.  Quadband Rectifier Using Resonant Matching Networks for Enhanced Harvesting Capability , 2017, IEEE Microwave and Wireless Components Letters.

[13]  Steve Lazar,et al.  A Passive UHF RFID Transponder for EPC Gen 2 with -14dBm Sensitivity in 0.13μm CMOS , 2007, 2007 IEEE International Solid-State Circuits Conference. Digest of Technical Papers.

[14]  Edgar Sanchez-Sinencio,et al.  Low-Input Power-Level CMOS RF Energy-Harvesting Front End , 2015, IEEE Transactions on Microwave Theory and Techniques.

[15]  Seng-Pan U,et al.  A Dual-Output Wireless Power Transfer System With Active Rectifier and Three-Level Operation , 2017, IEEE Transactions on Power Electronics.

[16]  Soumyajit Mandal,et al.  Low-Power CMOS Rectifier Design for RFID Applications , 2007, IEEE Transactions on Circuits and Systems I: Regular Papers.

[17]  Fei Yuan,et al.  A step-up transformer impedance transformation technique for efficient power harvesting of passive transponders , 2010, Microelectron. J..

[18]  Fei Yuan,et al.  A High-Gain Power-Matching Technique for Efficient Radio-Frequency Power Harvest of Passive Wireless Microsystems , 2010, IEEE Transactions on Circuits and Systems I: Regular Papers.

[19]  Konstantinos Mimis,et al.  Ambient RF energy harvesting trial in domestic settings , 2015 .

[20]  Wouter A. Serdijn,et al.  Co-Design of a CMOS Rectifier and Small Loop Antenna for Highly Sensitive RF Energy Harvesters , 2014, IEEE Journal of Solid-State Circuits.

[21]  R. Colella,et al.  High-Sensitivity CMOS RF-DC Converter in HF RFID Band , 2016, IEEE Microwave and Wireless Components Letters.

[22]  D. Pozar Microwave Engineering , 1990 .

[23]  Chen Wei,et al.  High-Efficiency Differential RF Front-End for a Gen2 RFID Tag , 2011, IEEE Transactions on Circuits and Systems II: Express Briefs.

[24]  Gerhard P. Hancke,et al.  An Energy-Efficient Smart Comfort Sensing System Based on the IEEE 1451 Standard for Green Buildings , 2014, IEEE Sensors Journal.

[25]  P. D. Mitcheson,et al.  Ambient RF Energy Harvesting in Urban and Semi-Urban Environments , 2013, IEEE Transactions on Microwave Theory and Techniques.

[26]  Catherine Dehollain,et al.  A 30 $\mu\text{W}$ Remotely Powered Local Temperature Monitoring Implantable System , 2016, IEEE Transactions on Biomedical Circuits and Systems.

[27]  Hakim Takhedmit Ambient RF power harvesting: Application to remote supply of a batteryless temperature sensor , 2016, 2016 IEEE International Smart Cities Conference (ISC2).

[28]  Gerald Holweg,et al.  A Multifrequency Passive Sensing Tag With On-Chip Temperature Sensor and Off-Chip Sensor Interface Using EPC HF and UHF RFID Technology , 2011, IEEE Journal of Solid-State Circuits.

[29]  J. F. Dickson,et al.  On-chip high-voltage generation in MNOS integrated circuits using an improved voltage multiplier technique , 1976 .

[30]  H. Yoshida,et al.  A 950-MHz rectifier circuit for sensor network tags with 10-m distance , 2006, IEEE Journal of Solid-State Circuits.

[31]  Man-Kay Law,et al.  A Wide Input Range Dual-Path CMOS Rectifier for RF Energy Harvesting , 2017, IEEE Transactions on Circuits and Systems II: Express Briefs.

[32]  Seunghyun Oh,et al.  A −32dBm sensitivity RF power harvester in 130nm CMOS , 2012, 2012 IEEE Radio Frequency Integrated Circuits Symposium.

[33]  Wouter A. Serdijn,et al.  An Autonomous Wireless Sensor Node With Asynchronous ECG Monitoring in 0.18 $\mu$ m CMOS , 2016, IEEE Transactions on Biomedical Circuits and Systems.

[34]  Kambiz Moez,et al.  A 3.2 V –15 dBm Adaptive Threshold-Voltage Compensated RF Energy Harvester in 130 nm CMOS , 2015, IEEE Transactions on Circuits and Systems I: Regular Papers.

[35]  K. Kotani,et al.  High-Efficiency Differential-Drive CMOS Rectifier for UHF RFIDs , 2009, IEEE Journal of Solid-State Circuits.

[36]  Kari Halonen,et al.  A novel cascading scheme to improve the performance of voltage multiplier circuits , 2015 .

[37]  Wouter A. Serdijn,et al.  An RF-Powered DLL-Based 2.4-GHz Transmitter for Autonomous Wireless Sensor Nodes , 2017, IEEE Transactions on Microwave Theory and Techniques.

[38]  Yi Huang,et al.  A Novel Six-Band Dual CP Rectenna Using Improved Impedance Matching Technique for Ambient RF Energy Harvesting , 2016, IEEE Transactions on Antennas and Propagation.

[39]  Young-Joon Kim,et al.  An Ultra-Low-Power RF Energy-Harvesting Transceiver for Multiple-Node Sensor Application , 2015, IEEE Transactions on Circuits and Systems II: Express Briefs.

[40]  Hameed Zohaib,et al.  RFエネルギーハーベスティングシステムのためのインピーダンス整合回路の設計【Powered by NICT】 , 2017 .

[41]  Peter M. Asbeck,et al.  A $\mu$ W Complementary Bridge Rectifier With Near Zero Turn-on Voltage in SOS CMOS for Wireless Power Supplies , 2012, IEEE Transactions on Circuits and Systems I: Regular Papers.

[42]  Kambiz Moez,et al.  Hybrid Forward and Backward Threshold-Compensated RF-DC Power Converter for RF Energy Harvesting , 2014, IEEE Journal on Emerging and Selected Topics in Circuits and Systems.

[43]  F. De Flaviis,et al.  Power Harvester Design for Passive UHF RFID Tag Using a Voltage Boosting Technique , 2007, IEEE Transactions on Microwave Theory and Techniques.

[44]  Manos M. Tentzeris,et al.  Ambient RF Energy-Harvesting Technologies for Self-Sustainable Standalone Wireless Sensor Platforms , 2014, Proceedings of the IEEE.

[45]  Ke Xiong,et al.  RF Energy Harvesting Wireless Powered Sensor Networks for Smart Cities , 2017, IEEE Access.

[46]  Denis Flandre,et al.  Fully-Automated and Portable Design Methodology for Optimal Sizing of Energy-Efficient CMOS Voltage Rectifiers , 2011, IEEE Journal on Emerging and Selected Topics in Circuits and Systems.

[47]  Hao Gao,et al.  A 50–60 GHz mm-Wave Rectifier With Bulk Voltage Bias in 65-nm CMOS , 2016, IEEE Microwave and Wireless Components Letters.

[48]  Zhi-Hui Kong,et al.  A High-Efficiency 6.78-MHz Full Active Rectifier With Adaptive Time Delay Control for Wireless Power Transmission , 2017, IEEE Transactions on Very Large Scale Integration (VLSI) Systems.

[49]  Chong Tan,et al.  A Four-Band Rectifier With Adaptive Power for Electromagnetic Energy Harvesting , 2016, IEEE Microwave and Wireless Components Letters.

[50]  Edgar Sánchez-Sinencio,et al.  A Fully Integrated Reconfigurable Self-Startup RF Energy-Harvesting System With Storage Capability , 2017, IEEE Journal of Solid-State Circuits.

[51]  Bo Li,et al.  An Antenna Co-Design Dual Band RF Energy Harvester , 2013, IEEE Transactions on Circuits and Systems I: Regular Papers.

[52]  Kari Halonen,et al.  Threshold voltage compensation scheme for RF-to-DC converter used in RFID applications , 2015 .

[53]  Veronique Kuhn,et al.  A Multi-Band Stacked RF Energy Harvester With RF-to-DC Efficiency Up to 84% , 2015, IEEE Transactions on Microwave Theory and Techniques.

[54]  Chi-Ying Tsui,et al.  Reconfigurable Resonant Regulating Rectifier With Primary Equalization for Extended Coupling- and Loading-Range in Bio-Implant Wireless Power Transfer , 2015, IEEE Transactions on Biomedical Circuits and Systems.

[55]  Fotis Plessas,et al.  Pseudo-FG technique for efficient energy harvesting , 2012 .

[56]  Pui-In Mak,et al.  A 73.9%-Efficiency CMOS Rectifier Using a Lower DC Feeding (LDCF) Self-Body-Biasing Technique for Far-Field RF Energy-Harvesting Systems , 2017, IEEE Transactions on Circuits and Systems I: Regular Papers.

[57]  Haluk Külah,et al.  Optimization of Power Conversion Efficiency in Threshold Self-Compensated UHF Rectifiers With Charge Conservation Principle , 2017, IEEE Transactions on Circuits and Systems I: Regular Papers.

[58]  Waleed Khalil,et al.  Wide-Range Adaptive RF-to-DC Power Converter for UHF RFIDs , 2016, IEEE Microwave and Wireless Components Letters.

[59]  Andrey S. Andrenko,et al.  Outdoor RF spectral survey: A roadmap for ambient RF energy harvesting , 2015, TENCON 2015 - 2015 IEEE Region 10 Conference.

[60]  Mohammad Sharifkhani,et al.  Analysis and Design of Power Harvesting Circuits for Ultra-Low Power Applications , 2017, IEEE Transactions on Circuits and Systems I: Regular Papers.

[61]  Liter Siek,et al.  A 2.45GHz CMOS rectifier for RF energy harvesting , 2016, 2016 IEEE Wireless Power Transfer Conference (WPTC).

[62]  Chun-Hsing Li,et al.  A Compact 0.9-/2.6-GHz Dual-Band RF Energy Harvester Using SiP Technique , 2017, IEEE Microwave and Wireless Components Letters.

[63]  Haluk Kulah,et al.  Modelling and efficiency optimisation of UHF Dickson rectifiers , 2016, IET Circuits Devices Syst..

[64]  A. Collado,et al.  Optimal Waveforms for Efficient Wireless Power Transmission , 2014, IEEE Microwave and Wireless Components Letters.

[65]  Shen-Iuan Liu,et al.  A Voltage Multiplier With Adaptive Threshold Voltage Compensation , 2017, IEEE Journal of Solid-State Circuits.

[66]  Bo Zhao,et al.  Novel Inductive Wireless Power Transfer Uplink Utilizing Rectifier Third-Order Nonlinearity , 2018, IEEE Transactions on Microwave Theory and Techniques.

[67]  Jiann-Jong Chen,et al.  PLL-Based Contactless Energy Transfer Analog FSK Demodulator Using High-Efficiency Rectifier , 2013, IEEE Transactions on Industrial Electronics.

[68]  K. Mayaram,et al.  Efficient Far-Field Radio Frequency Energy Harvesting for Passively Powered Sensor Networks , 2008, IEEE Journal of Solid-State Circuits.

[69]  Shuenn-Yuh Lee,et al.  A Low-Power 13.56 MHz RF Front-End Circuit for Implantable Biomedical Devices , 2013, IEEE Transactions on Biomedical Circuits and Systems.

[70]  Tolga Soyata,et al.  RF Energy Harvesting for Embedded Systems: A Survey of Tradeoffs and Methodology , 2016, IEEE Circuits and Systems Magazine.

[71]  Yu-Jiu Wang,et al.  A Millimeter-Wave In-Phase Gate-Boosting Rectifier , 2014, IEEE Transactions on Microwave Theory and Techniques.

[72]  Jian Kang,et al.  Design and Optimization of Area-Constrained Wirelessly Powered CMOS UWB SoC for Localization Applications , 2016, IEEE Transactions on Microwave Theory and Techniques.

[73]  Lutfi Albasha,et al.  High Efficiency Energy Harvesters in 65nm CMOS Process for Autonomous IoT Sensor Applications , 2018, IEEE Access.

[74]  François Krummenacher,et al.  A model for /spl mu/-power rectifier analysis and design , 2005, IEEE Transactions on Circuits and Systems I: Regular Papers.

[75]  Giuseppe Palmisano,et al.  An RF-Powered Transceiver Exploiting Sample and Hold Operation on the Received Carrier , 2018, IEEE Transactions on Microwave Theory and Techniques.

[76]  Ada S. Y. Poon,et al.  An RF-Powered FDD Radio for Neural Microimplants , 2017, IEEE Journal of Solid-State Circuits.

[77]  Tai-Cheng Lee,et al.  2.4-GHz High-Efficiency Adaptive Power , 2014, IEEE Transactions on Very Large Scale Integration (VLSI) Systems.

[78]  Hubregt J. Visser,et al.  RF Energy Harvesting and Transport for Wireless Sensor Network Applications: Principles and Requirements , 2013, Proceedings of the IEEE.

[79]  Y. Kawahara,et al.  E-WEHP: A Batteryless Embedded Sensor-Platform Wirelessly Powered From Ambient Digital-TV Signals , 2013, IEEE Transactions on Microwave Theory and Techniques.

[80]  G. Iannaccone,et al.  Design criteria for the RF section of UHF and microwave passive RFID transponders , 2005, IEEE Transactions on Microwave Theory and Techniques.

[81]  Haluk Külah,et al.  Threshold Compensated UHF Rectifier With Local Self-Calibrator , 2017, IEEE Microwave and Wireless Components Letters.

[82]  Patrick Chiang,et al.  0.56 V, –20 dBm RF-Powered, Multi-Node Wireless Body Area Network System-on-a-Chip With Harvesting-Efficiency Tracking Loop , 2014, IEEE Journal of Solid-State Circuits.

[83]  Chung-Yu Wu,et al.  A 13.56 MHz 40 mW CMOS High-Efficiency Inductive Link Power Supply Utilizing On-Chip Delay-Compensated Voltage Doubler Rectifier and Multiple LDOs for Implantable Medical Devices , 2014, IEEE Journal of Solid-State Circuits.

[84]  Shantanu Chakrabartty,et al.  Hybrid CMOS Rectifier Based on Synergistic RF-Piezoelectric Energy Scavenging , 2014, IEEE Transactions on Circuits and Systems I: Regular Papers.

[85]  Ping-Hsuan Hsieh,et al.  An RF Energy Harvester With 44.1% PCE at Input Available Power of -12 dBm , 2015, IEEE Transactions on Circuits and Systems I: Regular Papers.

[86]  Giuseppe Palmisano,et al.  A 90-nm CMOS Threshold-Compensated RF Energy Harvester , 2011, IEEE Journal of Solid-State Circuits.

[87]  Martin Fischer,et al.  Fully integrated passive UHF RFID transponder IC with 16.7-μW minimum RF input power , 2003, IEEE J. Solid State Circuits.

[88]  Kambiz Moez,et al.  Design of impedance matching circuits for RF energy harvesting systems , 2017, Microelectron. J..

[89]  S. Scorcioni,et al.  A Reconfigurable Differential CMOS RF Energy Scavenger With 60% Peak Efficiency and -21 dBm Sensitivity , 2013, IEEE Microwave and Wireless Components Letters.

[90]  Keum Cheol Hwang,et al.  A Design of a Wireless Power Receiving Unit With a High-Efficiency 6.78-MHz Active Rectifier Using Shared DLLs for Magnetic-Resonant A4 WP Applications , 2016, IEEE Transactions on Power Electronics.

[91]  Seulki Lee,et al.  A 5.2 mW Self-Configured Wearable Body Sensor Network Controller and a 12 $\mu$ W Wirelessly Powered Sensor for a Continuous Health Monitoring System , 2010, IEEE Journal of Solid-State Circuits.

[92]  Takayasu Sakurai,et al.  Wireless Power Transfer With Zero-Phase-Difference Capacitance Control , 2015, IEEE Transactions on Circuits and Systems I: Regular Papers.

[93]  Gregory D. Durgin,et al.  Theoretical Energy-Conversion Efficiency for Energy-Harvesting Circuits Under Power-Optimized Waveform Excitation , 2015, IEEE Transactions on Microwave Theory and Techniques.

[94]  Jorge R. Fernandes,et al.  Fully Integrated Energy Harvesting Circuit With −25-dBm Sensitivity Using Transformer Matching , 2015, IEEE Transactions on Circuits and Systems II: Express Briefs.

[95]  Gert Cauwenberghs,et al.  A 144-MHz Fully Integrated Resonant Regulating Rectifier With Hybrid Pulse Modulation for mm-Sized Implants , 2017, IEEE Journal of Solid-State Circuits.

[96]  Liter Siek,et al.  2.45GHz wide input range CMOS rectifier for RF energy harvesting , 2017, 2017 IEEE Wireless Power Transfer Conference (WPTC).

[97]  Wing-Hung Ki,et al.  A 6.78-MHz Single-Stage Wireless Power Receiver Using a 3-Mode Reconfigurable Resonant Regulating Rectifier , 2017, IEEE Journal of Solid-State Circuits.

[98]  Ross D. Murch,et al.  A Dual-Port Triple-Band L-Probe Microstrip Patch Rectenna for Ambient RF Energy Harvesting , 2017, IEEE Antennas and Wireless Propagation Letters.

[99]  Fan Zhang,et al.  A Batteryless 19 $\mu$W MICS/ISM-Band Energy Harvesting Body Sensor Node SoC for ExG Applications , 2013, IEEE Journal of Solid-State Circuits.

[100]  Wouter A. Serdijn,et al.  A High Efficiency Orthogonally Switching Passive Charge Pump Rectifier for Energy Harvesters , 2013, IEEE Transactions on Circuits and Systems I: Regular Papers.

[101]  Chi-Ying Tsui,et al.  A 13.56 MHz Wireless Power Transfer System With Reconfigurable Resonant Regulating Rectifier and Wireless Power Control for Implantable Medical Devices , 2015, IEEE Journal of Solid-State Circuits.

[102]  Wing-Hung Ki,et al.  A 13.56 MHz CMOS Active Rectifier With Switched-Offset and Compensated Biasing for Biomedical Wireless Power Transfer Systems , 2014, IEEE Transactions on Biomedical Circuits and Systems.

[103]  Behzad Razavi,et al.  Design of Analog CMOS Integrated Circuits , 1999 .